А1. У выражение -4m + 9n - 7m - 2n.
1) -3m + 11n
2) -3m + 7n
3) 11m + 7n
4) -11m + 7n
A2. Решите уравнение 5у + 1,5 = 2у - 7,5.
1) 6,375
2) 3
3) -3
4) 4
A3. У выражение с7 : c4 ∙ c.
1) c5
2) c6
3) c4
4) c12
A4. Выполните умножение и приведите подобные слагаемые (3a - b)(2b - 4a).
1) -12a2 – 10ab – 2b2
2) -12a2 + 10ab – 2b2
3) 6ab – 2b2
5) 6ab – 4b
A5. Преобразуйте в многочлен (4х – 5у)2.
1) 16х2 – 20ху + 25у2
2) 16х2 - 40ху + 25у2
3) 4х2 – 25у2
4) 16х2 – 25у2
A6. Один из смежных углов равен 20°. Найдите другой угол.
1) 700
2) 200
3) 1600
4) 1000
В задании В4 выполните построение с циркуля и линейки.
В4. Начертите три отрезка: 7см, 5см и 4см.
Постройте треугольник со сторонами, равными данным отрезкам.
F(-3) = 4(-3) - (-3)^3/3 + C = -12 + 27/3 + C = -3 + C = 10
C = 13
F(x) = 4x - x^3/3 + 13
2) f(x) = F'(x) = (cos 3x - cos pi)' = -3sin 3x
3) F(x) = -3/x - 7/5*sin 5x + C
4) Найдем, где они пересекаются - это пределы интегрирования
y = x^2
y = 6 - x
x^2 = 6 - x
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
Int(-3; 2) (6 - x - x^2) dx = 6x - x^2/2 - x^3/3 | (-3; 2) =
= 6*2 - 2^2/2 - 2^3/3 - (6(-3) - (-3)^2/2 - (-3)^3/3) =
= 12 - 2 - 8/3 + 18 + 9/2 - 9 = 10 + 9 - 8/3 + 9/2 = 19 + 11/6 = 20 5/6
5) Найдем, где они пересекаются - это пределы интегрирования
2sin x = sin x
sin x = 0
x1 = 0; x2 = pi
Int(0; pi) (2sin x - sin x) dx = Int(0; pi) sin x dx = cos x |(0; pi) =
= |cos pi - cos 0| = |-1 - 1| = |-2| = 2
x=0 x= -1 x=7
- + - +
-1 0 7
x∈[-1; 0]U[7; +∞)
2) 5x(3+x)(x-9)<0
x=0 x= -3 x=9
- + - +
-3 0 9
x∈(-∞; -3)U(0; 9)
3) x(2-x)>0
x(x-2)<0
x=0 x=2
+ - +
0 2
x∈(0; 2)
4) 0.4x(7-x)(x-0.8)≤0
x(x-7)(x-0.8)≥0
x=0 x=7 x=0.8
- + - +
0 0.8 7
x∈[0; 0.8]U[7; +∞)