яка ймовірність того, що кинутий гральний кубик впаде догори гранню з трьома очками ? з шістьма очками?
какова вероятность того, что брошен игральный кубик упадет вверх гранью с тремя очками ? с шестью очками? Решение: На игральном кубике всего одна грань с тремя очками. Вероятность того что выпадет 3 очка после одного броска по определению вероятности равна
Р = m/n = 1/6 где m=1- количество благоприятных исходов(количество граней с числом 3) n - количество всех исходов (количество всех граней кубика)
Вероятность того что выпадет 6 очков после одного броска по определению вероятности равна
Р = m/n = 1/6 где m=1- количество благоприятных исходов(количество граней с числом 6) n - количество всех исходов (количество всех граней кубика)
ответ 1/6
На гральному кубику всього одна грань з трьома очками. Імовірність того що випаде 3 очки після одного кидка по визначенню ймовірності дорівнює Р = m / n = 1/6
де m = 1 кількість сприятливих результатів (кількість граней з числом 3)n - кількість всіх результатів (кількість всіх граней кубика)
Імовірність того що випаде 6 очок після одного кидка по визначенню ймовірності дорівнює Р = m / n = 1/6
де m = 1 кількість сприятливих результатів (кількість граней з числом 6) n - кількість всіх результатів (кількість всіх граней кубика) відповідь 1/6
1) х^3+6х^2+11х+6, замечаем, что один из корней равен -1 (т.к. -a+b-c+d=0) выносим за скобку множитель x+1 x³+x²+5x²+5x+6x+6= =(x³+x²)+(5x²+5x)+(6x+6)= =x²(x+1)+5x(x+1)+6(x+1)= =(x+1)(x²+5x+6)= решаем квадратное уравнение: x²+5x+6=0 x₁₂=(-5+-√25-4*6)/2=(-5+-1)/2 x₁=-3 x₂=-2 т.е. (x+1)(x+2)(x+3)
2) а^5+а^4+а^3+а^2+а+1, замечаем, что один из корней равен -1 (т.к. -a+b-c+d-e+1=0) выносим за скобку множитель x+1 (а^5+а^4)+(а^3+а^2)+(а+1)=a⁴(a+1)+a²(a+1)+1(a+1)=(a+1)(a⁴+a²+1) P,S, в ответе наверно опечатка! т.к. (a⁴+a²+1) - не раскладывается на множители , потому что нет действительных корней D=-3
какова вероятность того, что брошен игральный кубик упадет вверх гранью с тремя очками ? с шестью очками?
Решение:
На игральном кубике всего одна грань с тремя очками.
Вероятность того что выпадет 3 очка после одного броска по определению вероятности равна
Р = m/n = 1/6
где m=1- количество благоприятных исходов(количество граней с числом 3)
n - количество всех исходов (количество всех граней кубика)
Вероятность того что выпадет 6 очков после одного броска по определению вероятности равна
Р = m/n = 1/6
где m=1- количество благоприятных исходов(количество граней с числом 6)
n - количество всех исходов (количество всех граней кубика)
ответ 1/6
На гральному кубику всього одна грань з трьома очками.
Імовірність того що випаде 3 очки після одного кидка по визначенню ймовірності дорівнює
Р = m / n = 1/6
де m = 1 кількість сприятливих результатів (кількість граней з числом 3)n - кількість всіх результатів (кількість всіх граней кубика)
Імовірність того що випаде 6 очок після одного кидка по визначенню ймовірності дорівнює
Р = m / n = 1/6
де m = 1 кількість сприятливих результатів (кількість граней з числом 6)
n - кількість всіх результатів (кількість всіх граней кубика)
відповідь 1/6
x³+x²+5x²+5x+6x+6=
=(x³+x²)+(5x²+5x)+(6x+6)=
=x²(x+1)+5x(x+1)+6(x+1)=
=(x+1)(x²+5x+6)=
решаем квадратное уравнение:
x²+5x+6=0
x₁₂=(-5+-√25-4*6)/2=(-5+-1)/2
x₁=-3 x₂=-2
т.е. (x+1)(x+2)(x+3)
2) а^5+а^4+а^3+а^2+а+1, замечаем, что один из корней равен -1 (т.к. -a+b-c+d-e+1=0) выносим за скобку множитель x+1
(а^5+а^4)+(а^3+а^2)+(а+1)=a⁴(a+1)+a²(a+1)+1(a+1)=(a+1)(a⁴+a²+1)
P,S, в ответе наверно опечатка! т.к. (a⁴+a²+1) - не раскладывается на множители , потому что нет действительных корней D=-3