В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MiaRia123
MiaRia123
18.10.2021 18:24 •  Алгебра

Абисциссасы 3‐ке тең және деуінің графигі тиісті нүктенің ординатасын табыңдар 1)х²‐ 2ху +2х²+х‐6у=0
2)2ху=9
3)3х‐2у+4=0
4) х²‐3х‐у+2=0​

Показать ответ
Ответ:
LisenokHan
LisenokHan
04.04.2021 05:13
Y =  (1/3)*(x^3) -(x^2)
Находим первую производную:
f'(x) = x2-2x
или
f'(x) = x(x-2)
Находим нули функции. Для этого приравниваем производную к нулю
x(x-2) = 0
Откуда:
x1 = 0
x2 = 2
На промежутке (-∞ ;0)  f'(x) > 0 -  функция возрастает; 
 На промежутке    (0; 2)    f'(x) < 0 функция убывает;
На промежутке  (2; +∞)    f'(x) > 0 функция возрастает.
В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума.
 В окрестности точки x = 2 производная функции меняет знак с (-) на (+). Следовательно, точка x = 2 - точка минимума.
0,0(0 оценок)
Ответ:
ukrainahfy
ukrainahfy
04.04.2021 05:13

y = 2x^{3} - 3x^{2}

y' = (2x^{3} - 3x^{2})' = 6x^{2} - 6x

Необходимые условия экстремума:

y' = 0

6x^{2} - 6x = 0

6x(x - 1) = 0

\left[\begin{array}{ccc}x_{1} = 0\\x_{2} = 1\\\end{array}\right

Имеем две критические (стационарные) точки: x_{1} = 0 и x_{2} = 1

Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.

Если точка с абсциссой x_{0} меняет знак с "+" на "–" (двигаясь в направлении увеличения x), то x_{0}  — точка максимума, а если с "–" на "+" , то x_{0}  — точка минимума.

Из промежутка x \in (-\infty; \ 0) выберем, например, x = -1 и имеем: y'(-1) = 6 \cdot (-1)^{2} - 6\cdot (-1) = 6 + 6 = 12 0

Из промежутка x \in (0; \ 1) выберем, например, x = 0,5 и имеем: y'(0,5) = 6 \cdot (0,5)^{2} - 6\cdot 0,5 = 1,5 - 3 = -1,5 < 0

Имеем максимум в точке с абсциссой x_{\max} = 0

Из промежутка x \in (1; \ +\infty) выберем, например, x = 2 и имеем: y'(2) = 6 \cdot 2^{2} - 6\cdot 2 = 24 - 12 = 12 0

Имеем минимум в точке с абсциссой x_{\min} = 1

ответ: x_{\max} = 0, \ x_{\min} = 1

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота