Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Упростим выражение 1 - sin (2 * a) - cos (2 * a).
Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Объяснение:
1) Функция определена всюду, кроме точек .
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.
9) Теперь, используя полученные данные, строим чертеж: