x = k/3; k € Z
Объяснение:
Область определения
cos(П/2 - 2Пх) ≠ 0
П/2 - 2Пх ≠ П/2 + Пm; m € Z
x ≠ - m/2; m € Z
Формулы приведения.
sin(П - 7Пх) = sin(7Пх)
sin(П/2 + 7Пх) = cos(7Пх)
sin(П - 2Пх) = sin(2Пх)
cos(П/2 - 2Пх) = sin(2Пх)
Подставляем.
sin^2(7Пх) + cos^2(7Пх) = sin(2Пх) / sin(2Пх) + sin(3Пx)*cos(Пх/2)
1 = 1 + sin(3Пх)*cos(Пх/2)
sin(3Пх)*cos(Пх/2) = 0
Если произведение равно 0, то один из множителей равен 0.
1) sin(3Пх) = 0
3Пх = П*k; k € Z
x1 = k/3; k € Z - это решение.
2) cos(Пх/2) = 0
Пх/2 = П/2 + П*n; n € Z
x2 = 1 + 2n; n € Z
Но при любом n можно подобрать такое m, что будет
x2 = 1 + 2n = - m/2
Поэтому никакое х2 не подходит по области определения.
Это линейная функция
1) Область определения - множество R
2) Область значений - множество R, если к не равно 0, а если к =0, то число b
3) При к не равно 0, функция ни парная ни непарная; если к =0, то функция парная; если b =0, то функция непарная
4) При к>0 функция возрастает, при к <0 функция убывает, при к =0 постоянная
5) Функция не имеет экстремумов
6) График - прямая, не проходящая через начало координат
7) При b =0 функция имеет вид у = кх. график - прямая, проходящая через начало координат
x = k/3; k € Z
Объяснение:
Область определения
cos(П/2 - 2Пх) ≠ 0
П/2 - 2Пх ≠ П/2 + Пm; m € Z
x ≠ - m/2; m € Z
Формулы приведения.
sin(П - 7Пх) = sin(7Пх)
sin(П/2 + 7Пх) = cos(7Пх)
sin(П - 2Пх) = sin(2Пх)
cos(П/2 - 2Пх) = sin(2Пх)
Подставляем.
sin^2(7Пх) + cos^2(7Пх) = sin(2Пх) / sin(2Пх) + sin(3Пx)*cos(Пх/2)
1 = 1 + sin(3Пх)*cos(Пх/2)
sin(3Пх)*cos(Пх/2) = 0
Если произведение равно 0, то один из множителей равен 0.
1) sin(3Пх) = 0
3Пх = П*k; k € Z
x1 = k/3; k € Z - это решение.
2) cos(Пх/2) = 0
Пх/2 = П/2 + П*n; n € Z
x2 = 1 + 2n; n € Z
x ≠ - m/2; m € Z
Но при любом n можно подобрать такое m, что будет
x2 = 1 + 2n = - m/2
Поэтому никакое х2 не подходит по области определения.
Это линейная функция
1) Область определения - множество R
2) Область значений - множество R, если к не равно 0, а если к =0, то число b
3) При к не равно 0, функция ни парная ни непарная; если к =0, то функция парная; если b =0, то функция непарная
4) При к>0 функция возрастает, при к <0 функция убывает, при к =0 постоянная
5) Функция не имеет экстремумов
6) График - прямая, не проходящая через начало координат
7) При b =0 функция имеет вид у = кх. график - прямая, проходящая через начало координат