2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Заметим, что периметр шоколадки станет равным 10, если она будет состоять из прямоугольников 1 x 4 или 2 x 3, т. е. по одной стороне одна клетка, по другой 4 или по одной 2 клетки, по другой 3. По условию Петя начинает игру первый. Покажем, что у него существует выигрышная стратегия. Допустим, что после его очередного хода шоколадка приняла форму квадрата со сторонами 5 x 5. В этом случае, какой бы ход ни сделал Вася, Петя побеждает следующим ходом. Это наглядно показано на рисунке. Следовательно, Петина стратегия заключается в урезании шоколадки на каждом своем ходу до квадрата. На первом ходу он отламывает от шоколадки кусок 1 x 2019, превращая шоколадку в квадрат 2019 x 2019. Затем каждый раз, когда Вася отламывает n клеток по горизонтали, Петя отламывает n клеток по вертикали, превращая шоколадку в квадрат размером (2019-n) x (2019-n). В результате найдется Васин ход, после которого по горизонтали или по вертикали шоколадки останется не более пяти клеток. Следующим своим ходом Петя либо сразу побеждает, если клеток менее пяти, либо урезает шоколадку до квадрата размером 5 x 5, если клеток ровно 5. Далее после любого Васиного хода Петя побеждает
1) Функция определена всюду, кроме точек .
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.
9) Теперь, используя полученные данные, строим чертеж:
Заметим, что периметр шоколадки станет равным 10, если она будет состоять из прямоугольников 1 x 4 или 2 x 3, т. е. по одной стороне одна клетка, по другой 4 или по одной 2 клетки, по другой 3. По условию Петя начинает игру первый. Покажем, что у него существует выигрышная стратегия. Допустим, что после его очередного хода шоколадка приняла форму квадрата со сторонами 5 x 5. В этом случае, какой бы ход ни сделал Вася, Петя побеждает следующим ходом. Это наглядно показано на рисунке. Следовательно, Петина стратегия заключается в урезании шоколадки на каждом своем ходу до квадрата. На первом ходу он отламывает от шоколадки кусок 1 x 2019, превращая шоколадку в квадрат 2019 x 2019. Затем каждый раз, когда Вася отламывает n клеток по горизонтали, Петя отламывает n клеток по вертикали, превращая шоколадку в квадрат размером (2019-n) x (2019-n). В результате найдется Васин ход, после которого по горизонтали или по вертикали шоколадки останется не более пяти клеток. Следующим своим ходом Петя либо сразу побеждает, если клеток менее пяти, либо урезает шоколадку до квадрата размером 5 x 5, если клеток ровно 5. Далее после любого Васиного хода Петя побеждает
Объяснение:
шик ответ