Волшебная карета, которая увезла Шрека и его принцессу в свадебное путешествие, первую часть пути ехала со скоростью 81 км/ч и проехала таким образом первые 162 км пути. Затем следующие 81 км карета ехала со скоростью 54 км/ч, и наконец, последний участок протяжённостью 54 км — со скоростью 27 км/ч.
Вычисли среднюю скорость кареты на протяжении всего пути.
1. х - скорость течения реки. По течению со скоростью (18+х)км/час 80 км за время: 80/(18+х) час Против течения те же 80 км со скоростью (18-х)км/час за время: 80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9; 80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час. (Отрицательную скорость течения х₂ отметаем) 2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4 б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3 3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2
В решении.
Объяснение:
Волшебная карета, которая увезла Шрека и его принцессу в свадебное путешествие, первую часть пути ехала со скоростью 81 км/ч и проехала таким образом первые 162 км пути. Затем следующие 81 км карета ехала со скоростью 54 км/ч, и наконец, последний участок протяжённостью 54 км — со скоростью 27 км/ч.
Вычисли среднюю скорость кареты на протяжении всего пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
S = 162 + 81 + 54 = 297 (км).
t= 162/81 + 81/54 + 54/27 = 2 + 1,5 + 2 = 5,5 (часа).
v = S/t
v = 297/5,5 = 54 (км/час).
По течению со скоростью (18+х)км/час 80 км за время:
80/(18+х) час
Против течения те же 80 км со скоростью (18-х)км/час за время:
80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9;
80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час.
(Отрицательную скорость течения х₂ отметаем)
2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4
б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3
3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2