Наибольшее число попыток - это когда нужно перебрать ВСЕ возможные варианты (комбинации). 1. Количество всех возможных вариантов набора = 10^4 = 10000. Я поясню почему так: четыре позиции, каждая позиция может принимать 10 возможных значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: для каждого из десяти вариантов первой позиции есть десять вариантов второй позиции, всего = 10*10 = 100. Для трех позиций: для каждого из 100 вариантов первых двух позиций есть еще 10 вариантов третьей позиции, всего = 100*10 = 1000 вариантов. Для четырех: для каждого из 1000 вариантов первых трех позиций есть 10 вариантов четвертой позиции, то есть всего = 1000*10 = 10000 вариантов. 2. Аналогично первому: есть две позиции, каждая позиция может принимать 10 значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: каждому варианту для первой позиции соответствует еще 10 вариантов второй позиции, всего 10*10 = 100 вариантов (комбинаций).
1. Количество всех возможных вариантов набора = 10^4 = 10000.
Я поясню почему так: четыре позиции, каждая позиция может принимать 10 возможных значений (цифры от 0 до 9 - десять цифр).
Для одной позиции = 10 вариантов.
Для двух позиций: для каждого из десяти вариантов первой позиции есть десять вариантов второй позиции, всего = 10*10 = 100.
Для трех позиций: для каждого из 100 вариантов первых двух позиций есть еще 10 вариантов третьей позиции, всего = 100*10 = 1000 вариантов.
Для четырех: для каждого из 1000 вариантов первых трех позиций есть 10 вариантов четвертой позиции, то есть всего = 1000*10 = 10000 вариантов.
2. Аналогично первому: есть две позиции, каждая позиция может принимать 10 значений (цифры от 0 до 9 - десять цифр).
Для одной позиции = 10 вариантов.
Для двух позиций: каждому варианту для первой позиции соответствует еще 10 вариантов второй позиции, всего 10*10 = 100 вариантов (комбинаций).
3Cos²x -5SinxCosx -2Sin²x = 0 | : Cos²x
3 -5tgx -2tg²x = 0
2tg²x +5tgx -3 = 0
tgx = t
2t² +5t -3 = 0
D = 49
t₁ = (-5+7)/4 = 1/2
t₂= (-5-7)/4 = -3
a) tgx = 1/2
x = arctg0,5+πk , k∈Z
б) tgx = 3
x = arctg3 + πn , n∈Z
2) √(3Sinx-Cosx)=2 |²
3Sinx - Cosx = 4
3*2tgx/2/(1 + tg²x/2) - (1 - tg²x/2)/(1 + tg²x/2) = 4
6tgx/2/(1 + tg²x/2) - (1 - tg²x/2)/(1 + tg²x/2) - 4 = 0
(6tgx/2 -1 + tg²x/2 - 4 - tg²x/2)/(1 + tg²x/2)
-3tg²x/2 + 6tgx/2 -5 = 0 (1 + tg²x/2≠0)
tgx/2 = z
3x² -6z +5 = 0
уравнение корней не имеет( или что-то с условием...)