В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
prostochel4
prostochel4
16.08.2020 23:07 •  Алгебра

Алгебра, расписать в тетради, очень нужно.

Показать ответ
Ответ:
ellaandharley30
ellaandharley30
04.02.2022 09:34

1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1

Объяснение:

1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.

2.

1)

y(-x)=\frac{-x^5+x^4}{-x+1}

y(-x)\neq y(x)\\y(-x)\neq -y(x)

Это функция общего вида

2)

y(-x)=-x^7-3a^2

y(-x)\neq y(x)\\y(-x)\neq -y(x)

Это функция общего вида

3)

y(-x)=\sqrt{5-x} -\sqrt{5+x}

y(-x)\neq y(x)\\y(-x)\neq -y(x)

Это функция общего вида

3.

1)

f(-x)=f(x)

Значит

min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3

2)

f(-x)=-f(x)

Значит

min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3

4.

x^4-ax^2+a^2-2a-3=0

Это биквадратное уравнение. Делаем подстановку

y=x^2\\y^2-ay+(a^2-2a-3)=0

Уравнение будет иметь один корень, когда дискриминант равен 0

Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

a^2-2a-3=0\\D=(-2)^2-4\cdot1\cdot(-3)=4+12=16\\\sqrt{D}=4 \\a_1=\frac{-(-2)-4 }{2}=-1 \\a_2=\frac{-(-2)+4 }{2}=3

Делаем проверку:

1) а=-1

x^4+x^2+0=0\\x^2(x^2+1)=0

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)

2) а=3

x^4-3x^2+0=0\\x^2(x^2-3)=0

Здесь появляется второй корень. Значит, это значение не подходит.

Окончательно получаем решение: а=-1

0,0(0 оценок)
Ответ:
Chcdhj
Chcdhj
13.11.2020 17:55
    log ( log(3 - 4^(x -1 ≤  1
осн-е х осн-е 2
(Логарифмическая функция бывает возрастающей
 ( основание >1) и убывающей ( 0 < основание <1). Значит, наш пример разваливается на 2,т.к. основание неизвестно. Поэтому будем рассматривать оба возможных случая. Учтём, что при возрастающей функции знак неравенства сохраняется. при убывающей- меняется на противоположный)
1) х>1 (*)
Зная, что 1 = logx
                    осн-е x, запишем:
        log(log(3 - 4^(x -1))) ≤ log x  ⇒
   осн-е х  осн-е2                  осн-е х
log(3 - 4^(x -1)) ≤ x
осн-е 2
3 - 4^(x - 1) ≤  2^x
3 - 4^(x -1) - 2^x ≤ 0
- 4^(x -1) - 2^x + 3 ≤ 0
4^(x -1) + 2^x -3 ≥ 0
4^x·4^-1 + 2^x - 3  ≥ 0
2^x = t
1/4·t² + t - 3 ≥ 0 |·4
t² + 4t -12 ≥ 0
корни - 6 и 2
неравенство выполняется при t ≥ 2     и     t ≤ -6
a) 2^x ≤ -6                              б) 2^x ≥ 2
нет решений                                x ≥ 1
ответ: х >1 (надо учесть (*))
2) 0< x < 1 (**)
Зная, что 1 = logx
                    осн-е x, запишем:
        log(log(3 - 4^(x -1))) ≤ log x  ⇒
   осн-е х  осн-е2                  осн-е х
log(3 - 4^(x -1)) ≥ x
осн-е 2
3 - 4^(x - 1) ≥  2^x
3 - 4^(x -1) - 2^x ≥ 0
- 4^(x -1) - 2^x + 3 ≥ 0
4^(x -1) + 2^x -3 ≤ 0
4^x·4^-1 + 2^x - 3  ≤ 0
2^x = t
1/4·t² + t - 3 ≤ 0 |·4
t² + 4t -12 ≤ 0
корни - 6 и 2
неравенство выполняется при t ∈[-6;2]
-6 ≤ t ≤ 2
-6 ≤2^x ≤2
(левая часть неравенства выполняется всегда, решаем: 2^x ≤ 2)
x ≤ 1
ответ:(0;1) (надо учесть (**)
    
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота