У = х³ - 3х + 1 производная y' = 3х² - 3 приравниваем y' = 0 и на ходим точки экстремумов 3(х² - 1) = 0 3(х + 1)(х - 1) = 0 Точки экстремумов х1 = -1; х2 = 1; График функции y' = 3х² - 3 - парабола веточками вверх пересекает ось х в точке х = -1, меняя знак с + на -. То есть в этой точке максимум. В точке х = 1, наоборот, знак производной меняется с - на +, поэтому это точка минимума. Найдём минимальное и максимальное значение функции 1) точка максимума при х = -1 у max = -1 + 3 + 1 = 3 2) точка минимума при х = 1 у min = 1 - 3 + 1 = -1
35a 2+7a 2b 2+5b+b 3 =
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2),
который мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3),
который мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .
производная
y' = 3х² - 3
приравниваем y' = 0
и на ходим точки экстремумов
3(х² - 1) = 0
3(х + 1)(х - 1) = 0
Точки экстремумов х1 = -1; х2 = 1;
График функции y' = 3х² - 3 - парабола веточками вверх пересекает ось х в точке х = -1, меняя знак с + на -. То есть в этой точке максимум.
В точке х = 1, наоборот, знак производной меняется с - на +, поэтому это точка минимума.
Найдём минимальное и максимальное значение функции
1) точка максимума при х = -1 у max = -1 + 3 + 1 = 3
2) точка минимума при х = 1 у min = 1 - 3 + 1 = -1