300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов 18 000·t + 2t·(x+y)=500 000 12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5 и подставляем в первое:
18 000 t + 2t·1 440t=500 00 или 36t²+225t-6250=0 a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975² t₁=(-225-975)/2<0 t₂=(-225+975)/72=750/72=10 целых 30/72 часа= =10 целых 5/12= 10 целых 25/60=10 часов 25 минут
1 куб дм = 1 л
300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов
18 000·t + 2t·(x+y)=500 000
12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5
и подставляем в первое:
18 000 t + 2t·1 440t=500 00
или
36t²+225t-6250=0
a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975²
t₁=(-225-975)/2<0
t₂=(-225+975)/72=750/72=10 целых 30/72 часа=
=10 целых 5/12= 10 целых 25/60=10 часов 25 минут
ответ. Первая труба работала10 часов 25 минут
ответ: (2 ;3) , (3;2)
Объяснение:
Честно я не очень понял к чему надо вот это :
x^5+y^5=u^5-5u^3v+5uv^2 ?
Система решается элементарно и без этого.
Пусть :
xy=t
Тогда :
x^3+y^3 = (x+y)*(x^2-xy+y^2) = (x+y)* ( (x+y)^2 -3*xy) =
=5*(25-3t)
x^2+y^2 = (x+y)^2 -2*xy = 25-2t
(x^2+y^2)*(x^3+y^3) = x^5 +y^5 +x^2*y^3 +y^2*x^3 =
= x^5+y^5 +x^2*y^2 * (x+y) = 275 +5*t^2
Таким образом верно равенство :
5*(25-3t)*(25-2t) = 275+5*t^2
(25-3*t)*(25-2t) = t^2+55
625 -50*t -75*t +6*t^2 = t^2+55
570 = 125*t -5*t^2
114 = 25*t -t^2
t^2-25*t +114=0
По теореме Виета : (t1+t2 = 25 ; t1*t1=114)
t1=6
t2=19
1) x+y=5
x*y=6
По теореме обратной теореме Виета , система имеет очевидное решение :
x1=2
y1=3
x2=3
y2=2
2) x+y=5
x*y=19
Очевидно , что для всех x и y
(x+y)^2 >=4*x*y
25>=76 (неверно)
Вывод : решений нет
ответ : (2 ;3) , (3;2)