Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
частные производные dz/dx=2x+y+1=0 и dz/dy=x+2y+1=0 Решая систему получим y=-2x-1 x+2(-2x-1)+1=0 x-4x-2+1=0 -3x=1 x=-1/3 y=-1/3 точка возможного экстремума (-1/3;-1/3) Если в этой точке выполнено условие f''xx × f''yy – (f''x y)² > 0, то точка (-1/3;-1/3) является точкой экстремума причем точкой максимума, если f''xx < 0, и точкой минимума, если f''xx > 0. где։ f''xx вторая производная по x f''yy вторая производная по y (f''x y)² производная по x, потом по y
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
функция определена
частные производные dz/dx=2x+y+1=0 и dz/dy=x+2y+1=0
Решая систему получим y=-2x-1 x+2(-2x-1)+1=0
x-4x-2+1=0
-3x=1
x=-1/3 y=-1/3 точка возможного экстремума (-1/3;-1/3)
Если в этой точке выполнено условие
f''xx × f''yy – (f''x y)² > 0, то точка (-1/3;-1/3) является точкой экстремума причем точкой максимума, если f''xx < 0, и точкой минимума, если f''xx > 0. где։
f''xx вторая производная по x
f''yy вторая производная по y
(f''x y)² производная по x, потом по y
f''xx=(2x+y+1)'=2
f''yy=(x+2y+1)'=2
f''x y=(2x+y+1)'=1
очевидно что 2*2-1²>0 и f''xx >0
значит точка (-1/3;-1/3) является точкой минимума