2)Тождество — это уравнение, которое удовлетворяется тождественно
3)число n (показывающее сколько раз повторяется множитель) – показателем степени
4)Квадратное уравнение называют приведенным, если его старший коэффициент равен 1.
5)Решить уравнение - значит найти все его корни или установить, что их нет.
6)Деление числителя и знаменателя на их общий делитель, отличный от
единицы, называют сокращением дроби.
7)при умножении ( делении ) числителя и знаменателя на одно и то же выражение ( число) получившаяся дробь = исходной
8)числители перемножаются отдельно
отдельно знаменатели
полученную дробь если это возможно сокращают
пример
2/3* 3/4 = (2*3)/(3*4)=6/12=1/2 (произвели сокращение на 6
9)Вам известно, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число.
10) Сложение и вычитание алгебраических дробей c одинаковыми
знаменателями выполняется по тому же правилу, что и с обыкновенными
дробями:
аd + bd – cd = a+b−cd .
11) Нам известно, что дробь 34 равна частному 3 : 4 ,
12)Пусть a0 и a1 - натуральные числа. Для нахождения их наибольшего общего делителя используется алгоритм Евклида [1] последовательного деления с остатком: a0=a0a1+a2, a1=a1a2+a3, a2=a2a3+a4, … ,где натуральные числа a0,a1,a2, … суть неполные частные. Это алгоритм разложения числа a =a0/a1 в правильную цепную дробь, и он применим к любым вещественным числам a. При этомa0=[a], где [a] - целая часть числа a, a1=[1/(a-a0)], … , т.е.
ответ: 120*a^4*b^9*c^2
Решаем по действиям:1. 4*2.5=10 X2.5 _ _4_ 10 2. a*a^2=a^3 a*a^2=a^(1+2) 2.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. 10*4=40 X10 _4_ _ 406. a^3*a=a^4 a^3*a=a^(3+1) 6.1. 3+1=4 +3 _1_ 47. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1. 3+3=6 +3 _3_ 68. -(-40*a^4*b^6)=40*a^4*b^69. 40*3=120 X40 _3_ _ 12010. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1. 6+3=9 +6 _3_ 9
Решаем по шагам:1. (-10*a*b^3*a^2)*(-4*a*b^3)*c^2*3*b^3 1.1. 4*2.5=10 X2.5 _ _4_ 10 2. (-10*a^3*b^3)*(-4*a*b^3)*c^2*3*b^3 2.1. a*a^2=a^3 a*a^2=a^(1+2) 2.1.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3*(-4*a*b^3))*c^2*3*b^3 3.1. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. (-(-10*a^3*b^3*4*a*b^3))*c^2*3*b^3 4.1. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. (-(-40*a^3*b^3*a*b^3))*c^2*3*b^3 5.1. 10*4=40 X10 _4_ _ 406. (-(-40*a^4*b^3*b^3))*c^2*3*b^3 6.1. a^3*a=a^4 a^3*a=a^(3+1) 6.1.1. 3+1=4 +3 _1_ 47. (-(-40*a^4*b^6))*c^2*3*b^3 7.1. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1.1. 3+3=6 +3 _3_ 68. 40*a^4*b^6*c^2*3*b^3 8.1. -(-40*a^4*b^6)=40*a^4*b^69. 120*a^4*b^6*c^2*b^3 9.1. 40*3=120 X40 _3_ _ 12010. 120*a^4*b^9*c^2 10.1. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1.1. 6+3=9 +6 _3_ 9
ответ:1)Алгебраической называют дробью.
2)Тождество — это уравнение, которое удовлетворяется тождественно
3)число n (показывающее сколько раз повторяется множитель) – показателем степени
4)Квадратное уравнение называют приведенным, если его старший коэффициент равен 1.
5)Решить уравнение - значит найти все его корни или установить, что их нет.
6)Деление числителя и знаменателя на их общий делитель, отличный от
единицы, называют сокращением дроби.
7)при умножении ( делении ) числителя и знаменателя на одно и то же выражение ( число) получившаяся дробь = исходной
8)числители перемножаются отдельно
отдельно знаменатели
полученную дробь если это возможно сокращают
пример
2/3* 3/4 = (2*3)/(3*4)=6/12=1/2 (произвели сокращение на 6
9)Вам известно, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число.
10) Сложение и вычитание алгебраических дробей c одинаковыми
знаменателями выполняется по тому же правилу, что и с обыкновенными
дробями:
аd + bd – cd = a+b−cd .
11) Нам известно, что дробь 34 равна частному 3 : 4 ,
значит, выражение ( 14+ 15) : ( 13− 16) = ( 14+ 15)( 13− 16) .
Частное двух чисел или выражений, в котором знак деления
обозначен чертой, называют дробным выражением.
Найдем значения выражений:
а) ( 14+ 15)( 13− 16) = ( 520+ 420)( 26− 16) = ( 920)( 16) = 920 : 16 =
= 920• 61 = 5420 = 2 710 = 2,7
12)Пусть a0 и a1 - натуральные числа. Для нахождения их наибольшего общего делителя используется алгоритм Евклида [1] последовательного деления с остатком: a0=a0a1+a2, a1=a1a2+a3, a2=a2a3+a4, … ,где натуральные числа a0,a1,a2, … суть неполные частные. Это алгоритм разложения числа a =a0/a1 в правильную цепную дробь, и он применим к любым вещественным числам a. При этомa0=[a], где [a] - целая часть числа a, a1=[1/(a-a0)], … , т.е.
a=a0+ 1a1+ 1a2+ 1a3+ ···,
13)http://school.xvatit.com/images/9/92/11-06-34.jpg
14)Складываются показатели степеней при УМНОЖЕНИИ степеней с одинаковыми основаниями.
2^3+2^5=8+32=40.
Подробнее - на -
Объяснение: