Банк назначил годовую процентную ставку 15%. Предприниматель за 6 лет погасил первоначальную сумму долга и дополнительно выплатил 46000000 сум по процентам. Какая сумма была взята в долг?
1. преобразуйте выражение √3sinx-cosx к виду C sin(x+t) или С cos (x+t) теория A*sin(x)+B*cos(x) = ={ sinx*A/корень(A^2+B^2)+/корень(A^2+B^2)*cosx } * корень(A^2+B^2)= ={ sin(x+arcsin(B/корень(A^2+B^2)) } * корень(A^2+B^2) решение √3sinx-cosx = {sin(x)*√3/2-cosx*(1/2)} * 2 = {sin(x)*cos(pi/6)-cosx*sin(pi/6)} * 2 = =2*sin(x-pi/6)
2. найдите область значения функции y=9sinx+12 cos x
y=9sinx+12 cos x = = { sin(x)*9/корень(9^2+12^2) + cos(x)*12/корень(9^2+12^2)} * корень(9^2+12^2) = = { sin(x)*0,6 + cos(x)*0,8} * 15 = 15*sin(x+arcsin(0,8)) ответ - область значений от -15 до +15
3. решите уравнение sin 3x + √3 cos 3x =2 sin 3x + √3 cos 3x =2
sin 3x*1/2 + √3/2 cos 3x =2/2=1 sin (3x+arcsin(√3/2)) = 1 3x+pi/3 = pi/2+2*pi*k 3x = pi/6+2*pi*k x = pi/18+2*pi*k/3
11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
теория
A*sin(x)+B*cos(x) =
={ sinx*A/корень(A^2+B^2)+/корень(A^2+B^2)*cosx } * корень(A^2+B^2)=
={ sin(x+arcsin(B/корень(A^2+B^2)) } * корень(A^2+B^2)
решение
√3sinx-cosx = {sin(x)*√3/2-cosx*(1/2)} * 2 = {sin(x)*cos(pi/6)-cosx*sin(pi/6)} * 2 =
=2*sin(x-pi/6)
2. найдите область значения функции y=9sinx+12 cos x
y=9sinx+12 cos x =
= { sin(x)*9/корень(9^2+12^2) + cos(x)*12/корень(9^2+12^2)} * корень(9^2+12^2) =
= { sin(x)*0,6 + cos(x)*0,8} * 15 = 15*sin(x+arcsin(0,8))
ответ - область значений от -15 до +15
3. решите уравнение sin 3x + √3 cos 3x =2
sin 3x + √3 cos 3x =2
sin 3x*1/2 + √3/2 cos 3x =2/2=1
sin (3x+arcsin(√3/2)) = 1
3x+pi/3 = pi/2+2*pi*k
3x = pi/6+2*pi*k
x = pi/18+2*pi*k/3
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).