3.
y = -x^2 + 4x + 5
Решаем через дискриминант.
D = b^2 - 4ac = 16 - 4 * (-1) * 5 = 16 + 20 = 36
x1 = (-b - sqrt(D)) / 2a = (- 4 - 6) / 2 = -5
x2 = (-b + sqrt(D)) / 2a = (- 4 + 6) / 2 = 1
Проверка: 25 - 20 + 5 = 1 + 4 + 5 = 10.
4.
x - y = 3
x^2 - xy - 2y^2 = 7
Здесь можно выразить х через у, используя первое выражение.
х = у + 3
Подставляем его во второе выражение:
(y + 3)^2 - (y + 3) * y - 2y^2 = 7
(y + 3)^2 = y^2 + 6y + 9 - по формуле сокращенного умножения
(y + 3) * y = y^2 + 3y
y^2 + 6y + 9 - y^2 - 3y - 2y^2 = 7
3y + 9 - 2y^2 = 7
-2y^2 + 3y + 9 = 7 - приводим к нулю
-2y^2 + 3y + 2 = 0 - теперь у нас квадратичное уравнение, решаем как всегда.
D = b^2 - 4ac = 9 - (-16) = 25
y1 = (-b - sqrt(D)) / 2a = (-3 - 5) / -4 = 2
y2 = (-b + sqrt(D)) / 2a = (-3 + 5) / -4 = -0,5
Подставляем к значениям х:
х1 - 2 = 3
x1 = 5
Проверяем по второму выражению:
25 - 10 - 8 = 7
x2 - (-0,5) = 3
x2 = 2,5
6.25 + 1.25 - 0.5 = 7
В обоих случаях все сошлось.
ответ: х1 = 5, у1 = 2; х2 = 2,5, у2 = -0,5.
1/а.
Объяснение:
Преобразовать (упростить):
[(2a+3)/(2a-3)]*[(2a²+3a)/(4a²+12a+9)]-[(3a+2)/(2a+3)]+[(4a-1)/(2a-3)]-[(a-1)/a];
1)В скобках. Преобразовать:
числитель первой дроби:(2a²+3a)=а(2а+3);
знаменатель первой дроби:(4a²+12a+9)=(2а+3)²;
Вычитание:
[а(2а+3)/(2а+3)²] - [(3a+2)/(2a+3)]=
сокращение на (2а+3) в первой дроби:
=[а/(2а+3)] - [(3a+2)/(2a+3)]=
общий знаменатель (2a+3):
=(а-3а-2)/(2а+3)=
=(-2а-2)/(2а+3);
2)Умножение:
[(2a+3)/(2a-3)] * [(-2а-2)/(2а+3)]=
=[(2a+3)*(-2a-2)] / [(2а-3)*(2а+3)]=
сокращение на (2а+3) в числителе и знаменателе:
=(-2a-2)/(2а-3);
3)Сложение:
[(-2a-2)/(2а-3)] + [(4a-1)/(2a-3)]=
общий знаменатель (2а-3):
=(-2а-2+4а-1)/(2а-3)=
=(2а-3)/(2а-3)=1;
4)Вычитание:
1-[(а-1)/а]=
общий знаменатель а:
=(a-a+1)/a=
=1/a.
3.
y = -x^2 + 4x + 5
Решаем через дискриминант.
D = b^2 - 4ac = 16 - 4 * (-1) * 5 = 16 + 20 = 36
x1 = (-b - sqrt(D)) / 2a = (- 4 - 6) / 2 = -5
x2 = (-b + sqrt(D)) / 2a = (- 4 + 6) / 2 = 1
Проверка: 25 - 20 + 5 = 1 + 4 + 5 = 10.
4.
x - y = 3
x^2 - xy - 2y^2 = 7
Здесь можно выразить х через у, используя первое выражение.
х = у + 3
Подставляем его во второе выражение:
(y + 3)^2 - (y + 3) * y - 2y^2 = 7
(y + 3)^2 = y^2 + 6y + 9 - по формуле сокращенного умножения
(y + 3) * y = y^2 + 3y
y^2 + 6y + 9 - y^2 - 3y - 2y^2 = 7
3y + 9 - 2y^2 = 7
-2y^2 + 3y + 9 = 7 - приводим к нулю
-2y^2 + 3y + 2 = 0 - теперь у нас квадратичное уравнение, решаем как всегда.
D = b^2 - 4ac = 9 - (-16) = 25
y1 = (-b - sqrt(D)) / 2a = (-3 - 5) / -4 = 2
y2 = (-b + sqrt(D)) / 2a = (-3 + 5) / -4 = -0,5
Подставляем к значениям х:
х1 - 2 = 3
x1 = 5
Проверяем по второму выражению:
25 - 10 - 8 = 7
x2 - (-0,5) = 3
x2 = 2,5
Проверяем по второму выражению:
6.25 + 1.25 - 0.5 = 7
В обоих случаях все сошлось.
ответ: х1 = 5, у1 = 2; х2 = 2,5, у2 = -0,5.
1/а.
Объяснение:
Преобразовать (упростить):
[(2a+3)/(2a-3)]*[(2a²+3a)/(4a²+12a+9)]-[(3a+2)/(2a+3)]+[(4a-1)/(2a-3)]-[(a-1)/a];
1)В скобках. Преобразовать:
числитель первой дроби:(2a²+3a)=а(2а+3);
знаменатель первой дроби:(4a²+12a+9)=(2а+3)²;
Вычитание:
[а(2а+3)/(2а+3)²] - [(3a+2)/(2a+3)]=
сокращение на (2а+3) в первой дроби:
=[а/(2а+3)] - [(3a+2)/(2a+3)]=
общий знаменатель (2a+3):
=(а-3а-2)/(2а+3)=
=(-2а-2)/(2а+3);
2)Умножение:
[(2a+3)/(2a-3)] * [(-2а-2)/(2а+3)]=
=[(2a+3)*(-2a-2)] / [(2а-3)*(2а+3)]=
сокращение на (2а+3) в числителе и знаменателе:
=(-2a-2)/(2а-3);
3)Сложение:
[(-2a-2)/(2а-3)] + [(4a-1)/(2a-3)]=
общий знаменатель (2а-3):
=(-2а-2+4а-1)/(2а-3)=
=(2а-3)/(2а-3)=1;
4)Вычитание:
1-[(а-1)/а]=
общий знаменатель а:
=(a-a+1)/a=
=1/a.