Пусть t(ч) — время, за которое Пончик съедает три плюшки, x(км/ч) — скорость автобуса. В момент времени, когда мимо Пончика проехал автомобиль, автобус находился от него на расстоянии 2xt км, а мотоцикл — на расстоянии 30t км. Cпустя a часов, в тот момент времени, когда мимо Сиропчика проехал мотоцикл, автомобиль находился от него на расстоянии 60t км, а автобус — на расстоянии 2xt км от мотоцикла, следовательно, на расстоянии 2xt – 60t км от автомобиля. Сравнивая расстояния, пройденные автомобилем и мотоциклом получаем уравнение a(60 – 30) = 60t + 30t, откуда , а сравнивая расстояния, пройденные автобусом и автомобилем, получаем уравнение a(60 – x) = (2xt – (2xt – 60t)) = 60t, откуда .
Пусть t(ч) — время, за которое Пончик съедает три плюшки, x(км/ч) — скорость автобуса. В момент времени, когда мимо Пончика проехал автомобиль, автобус находился от него на расстоянии 2xt км, а мотоцикл — на расстоянии 30t км. Cпустя a часов, в тот момент времени, когда мимо Сиропчика проехал мотоцикл, автомобиль находился от него на расстоянии 60t км, а автобус — на расстоянии 2xt км от мотоцикла, следовательно, на расстоянии 2xt – 60t км от автомобиля. Сравнивая расстояния, пройденные автомобилем и мотоциклом получаем уравнение a(60 – 30) = 60t + 30t, откуда , а сравнивая расстояния, пройденные автобусом и автомобилем, получаем уравнение a(60 – x) = (2xt – (2xt – 60t)) = 60t, откуда .
ответ: 40 км/ч.
(x² + 4x)(x² + 4x - 17) + 60 = 0. Обозначим x² + 4x = y. Тогда уравнение примет вид: y(y - 17) + 60 = 0 => y² - 17y + 60 = 0. По теореме Виета y₁*y₂ = 60 и y₁ + y₂ = 17. Отсюда y₁ = 5, y₂ = 12. Тогда, возвращаясь к первоначальной переменной, имеем: x² + 4x = y₁ => x² + 4x = 5 => x² + 4x - 5 = 0. По т. Виета x₁*x₂ = -5, x₁ + x₂ = -4 => x₁ = -5, x₂ = 1. Это первая пара корней. Аналогично x² + 4x = y₂ => x² + 4x = 12 => x² + 4x - 12 = 0. По т. Виета x₃*x₄ = -12, x₃ + x₄ = -4 => x₃ = -6, x₄ = 2. Это вторая пара корней.
ответ: (x₁, x₂) = (-5, 1), (x₃, x₄) = (-6, 2).