Чему равно значение выражения 2 Икс минус игрек, где 2 x и y целые числа, если X больше или равно 0,5 Икс меньше 1, а прo Y известно, что Y меньше 5 и Y больше или равно 4?
Формула энного члена геометрической прогрессии: bn=b1 * q^n-1 значит, формула двенадцатого члена: b12=b1 * q^11 1536=b1 * q^11 формула четвертого члена: b4=b1 * q^3 6=b1 * q^3 теперь, разделим двенадцатый член прогрессии на четвертый член и из этого найдём значение q^8 (т.к при делении степени вычитаются, следовательно 11-3=8) 1536:6=256 256=2^8 отсюда q=2 теперь подставим значение q в формулу четвертого члена прогрессии 6=b1 * 2^3 отсюда b1= 0.75 формула суммы n членов геометрической прогрессии: Sn=b1(q^n-1 - 1)/q-1 S11=0/75(2^10 - 1)/2-1 S11=0/75*1023=768
a1 = -9.6
a2 = -8.3
d = a2 - a1 = -8.3 - ( -9.6) = 1,3
аn = a1 + (n - 1)d ≥ 0
-9.6 + (n - 1)*1,3 ≥ 0
-9.6 + 1,3n - 1,3 ≥ 0
1,3n - 10,9 ≥ 0
1,3n ≥ 10,9
n ≥ 10,9 / 1,3
n ≥ 8,38... => номер первого неотрицательного члена прогрессии n = 9
Значит первые восемь её членов отрицательны. Найдем их сумму:
Sn = 2a1 + (n - 1)d * n
2
S8 = 2*( -9.6) + 7*1,3 * 8 = ( -19,2 + 9,1)* 4 = ( -10,1)* 4 = - 40,4
2
ОТВЕТ: -40,4
значит, формула двенадцатого члена: b12=b1 * q^11
1536=b1 * q^11
формула четвертого члена: b4=b1 * q^3
6=b1 * q^3
теперь, разделим двенадцатый член прогрессии на четвертый член и из этого найдём значение q^8 (т.к при делении степени вычитаются, следовательно 11-3=8)
1536:6=256
256=2^8
отсюда q=2
теперь подставим значение q в формулу четвертого члена прогрессии
6=b1 * 2^3
отсюда b1= 0.75
формула суммы n членов геометрической прогрессии: Sn=b1(q^n-1 - 1)/q-1
S11=0/75(2^10 - 1)/2-1
S11=0/75*1023=768