Четыре числа образуют геометрическую прогрессию. Если к ним прибавить соответственно 2, 5, 7 и 7, то получим четыре числа, которые образуют арифметическую прогрессию. Определи числа, образующие геометрическую прогрессию.
ответ:
знаменатель геометрической прогрессии: q=
.
Члены геометрической прогрессии:
b1=
;b2=
;b3=
;b4=
y = - x³ + 3x² + 4
Найдём производную :
y' = (- x³)' + 3(x²)' + 4' = - 3x² + 6x
Приравняем производную к нулю , найдём критические точки :
- 3x² + 6x = 0
- 3x(x - 2) = 0
x₁ = 0
x - 2 = 0 ⇒ x₂ = 2
Обе критические точки принадлежат заданному отрезку. Найдём значения функции в критических точках и на концах отрезка и сравним их .
y(- 3) = -(- 3)³ + 3 * (- 3)² + 4 = 27 + 27 + 4 = 58
y( 3) = - 3³ + 3 * 3² + 4 = - 27 + 27 + 4 = 4
y( 0) = - 0³ + 3 * 0² + 4 = 4
y(2) = - 2³ + 3 * 2² + 4 = - 8 + 12 + 4 = 8
Наименьшее значение функции равно 4, а наибольшее равно 58 .
1). (a+6)/a + a/(6-a)=(36-a²+a²)/a(6-a)=36/(6a-a²)
2). 4/(b^2-3b) - b/(3b-9)=4/b(b-3) -b/3(b-3)=(12-b²)/3b(b-3)
2. Докажите, что при всех допустимых значениях "х" значение выражения
(7x-8)/(5x+5) + (4-5x)/(3x+3) не зависит от "х".
(7x-8)/(5x+5) + (4-5x)/(3x+3)=(7x-8)/5(x+1) + (4-5x)/3(x+1)=(21x-24+20-25x)/15(x+1)=
=(-4-4x)/15(x+1)=-4(1+x)/15(x+1)==-4/15
3. Упростите выражение y-3/4y+y^2 - y-4/y^2-16.
y-3/4y+y^2 - y-4/y^2-16=(y-3)/y(4+y) - (y-4)/(y+4)(y-4)=
=(y²-4y-3y+12-y²+4y)/y(4+y)(y-4)=(-3y+12)/y(4+y)(y-4)=
=-3(y-4)/y(4+y)(y-4)=-3/(4+y)