1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
___________________________
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.
14 дней и 28 дней
Объяснение:
1 рабочий сделал бы всю работу за x дней, по 1/x части в день.
2 рабочий сделал бы всю работу за y дней, по 1/y части в день.
Вместе они за 7 дней сделали 7(1/x + 1/y) часть, и это 3/4 работы.
7(1/x + 1/y) = 3/4
1/x + 1/y = 3/(4*7) = 3/28
Осталось сделать 1/4 работы, и они ее закончили за 10 дней.
Причем 1 рабочий проработал все оставшиеся 3 дня, а 2 рабочий работал 1 день, а 2 дня не выходил на работу.
3/x + 1/y = 1/4
Составляем систему:
{ 1/x + 1/y = 3/28
{ 3/x + 1/y = 1/4 = 7/28
Вычитаем из 2 уравнения 1 уравнение
3/x + 1/y - 1/x - 1/y = 7/28 - 3/28
2/x = 4/28 = 1/7
x = 2*7 = 14 дней - за это время сделает работу 1 рабочий.
1/y = 3/28 - 1/x = 3/28 - 1/14 = 3/28 - 2/28 = 1/28
y = 28 дней - за это время сделает работу 2 рабочий.
1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
___________________________
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.
14 дней и 28 дней
Объяснение:
1 рабочий сделал бы всю работу за x дней, по 1/x части в день.
2 рабочий сделал бы всю работу за y дней, по 1/y части в день.
Вместе они за 7 дней сделали 7(1/x + 1/y) часть, и это 3/4 работы.
7(1/x + 1/y) = 3/4
1/x + 1/y = 3/(4*7) = 3/28
Осталось сделать 1/4 работы, и они ее закончили за 10 дней.
Причем 1 рабочий проработал все оставшиеся 3 дня, а 2 рабочий работал 1 день, а 2 дня не выходил на работу.
3/x + 1/y = 1/4
Составляем систему:
{ 1/x + 1/y = 3/28
{ 3/x + 1/y = 1/4 = 7/28
Вычитаем из 2 уравнения 1 уравнение
3/x + 1/y - 1/x - 1/y = 7/28 - 3/28
2/x = 4/28 = 1/7
x = 2*7 = 14 дней - за это время сделает работу 1 рабочий.
1/y = 3/28 - 1/x = 3/28 - 1/14 = 3/28 - 2/28 = 1/28
y = 28 дней - за это время сделает работу 2 рабочий.