4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника
пусть ВС=х, имеем АВ=х+2,а АС=2х
х+х+2+2х=50
4х=48
х=12 см-ВС
АВ=12+2=14 см
АС=2*12=24 см
и задача
Ежедневно рабочий должен был изготовлять 20 деталей, но изготовлял 30. (20+10=30). Пусть за х дней рабочий должен был выполнить задание, тогда за х-4 дня он его выполнил. По условию задачи составляем уравнение:
Функция f(x) называется возрастающей, если для для любых двух чисел таких, что x₁ < x₂, выполняется условие f(x₁) < f(x₂).
Т.е. для возрастающей функции при x₁ < x₂ разность f(x₁) - f(x₂) < 0.
Выберем два последовательных числа, n и (n + 1). У нас выполняется условие n < n + 1.
Оценим разность значений функции при этих значениях аргумента:
f(n) = 3n - 5
f(n+1) = 3(n + 1) - 5 = 3n + 3 - 5 = 3n - 2
f(n) - f(n+1) = 3n - 5 - (3n - 2) = 3n - 5 - 3n +2 = -3
f(n) - f(n+1) = - 3 < 0
⇒ f(n) < f(n+1) функция возрастающая. Доказано.
а) 4а² - 12ab +9b²
б) (5x)² - (3y)² = 25x² - 9y²
в) 2a³(a² + 4ab + 4b²) = 2a^5 + 8a^4b + 8a³b²
2а-3 )²+ ( 3-2а )( 3+2а ) -3 ( а+2 )( 3а-1 )=4a²-12a +9+9-4a²-9a²-3a-18a-6= -9a² -33a+12
-50-20х-2х²= - 2(х²+10x+25)= -2 (x+5)(x+5)
1. У выражение: а) 3а2b • (-5а3b)=-15а^5b^2
б) (2х2у)3=8х^6у^3
2. Решите уравнение 3х - 5 (2х + 1) = 3 (3 - 2х)
3х-10х-5=9-6х
-7х+6х=9+5
-х=14
х=-14.
3. Разложите на множители: а) 2ху - 6y2=2у(х-6y)
б) а3 - 4а=а(а^2-4)
4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника
пусть ВС=х, имеем АВ=х+2,а АС=2х
х+х+2+2х=50
4х=48
х=12 см-ВС
АВ=12+2=14 см
АС=2*12=24 см
и задача
Ежедневно рабочий должен был изготовлять 20 деталей, но изготовлял 30. (20+10=30). Пусть за х дней рабочий должен был выполнить задание, тогда за х-4 дня он его выполнил. По условию задачи составляем уравнение:
30(x-4)=20x
30x-120=20x
30x-20x=120
10x=120
x=120:10
x=12
ответ: за 12 дней