Все натуральные числа делятся на три категории - вида 3k, вида 3k+1 и 3k-1. Если p=3k и является простым, то это p=3, при этом p+10=13 и p+14=17 являются простыми. Если p=3k+1, то p+14=3k+15=3(k+5), то есть p+14 не является простым. Если p=3k-1, то p+10=3k+9=3(k+3), то есть p+10 не является простым. Таким образом, 3 - единственное число, удовлетворяющее условию задачи.
Замечание. Если со школьного уровня перейти на студенческий, то простые числа надо искать и среди отрицательных чисел. Тогда решений будет больше, но это - тема уже другой задачи.
n(n+1) = 25k+1 ; рассмотрим остатки от деления числа n на 5 :
1) если n = 5m , то левая часть кратна 5 , а правая нет
2) если n = 5m+1 , то n(n+1) = (5m+1)·(5m+2) = 25m²+15m +2
25m²+15m +2 = 25k+1 или : 25m²+15m - 25k = -1 , равенство
невозможно , так как левая часть кратна 5 , а правая нет
3) если n = 5m+2, то n(n+1) = (5m+2)·(5m+3) = 25m²+25m +6 ,
25m²+25m +6 = 25k +1 или : 5m² +5m -5k = - 1 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
4) если n = 5m+3 , то n(n+1) = (5m+3)·(5m+4) = 25m² + 35m +12
25m² + 35m +12 = 25k+1 ⇒ 25m² + 35m -25k = -11 ; равенство
невозможно , так как левая часть кратна 5 , а правая нет
5) если n = 5m+4 , то n(n+1) = (5m+4)·(5m+5) = 5( m+1)(5m+4)
5( m+1)(5m+4) = 25k +1 , равенство невозможно ,
так как левая часть кратна 5 , а правая нет
Замечание. Если со школьного уровня перейти на студенческий, то простые числа надо искать и среди отрицательных чисел. Тогда решений будет больше, но это - тема уже другой задачи.