Что объединяет понятия, образующие каждый из представленных рядов? Дайте краткий ответ. 4.1. Компромисс, сотрудничество, избегание, при 4.2. Игра, труд, учение 4.3. Речь, жесты, мимика, взгляд
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
С самого рождения демонстрировал необыкновенную физическую силу и храбрость, но при этом из-за враждебности Геры должен был подчиняться своему родственнику Еврисфею. В юности Геракл обеспечил родному городу победу над Эргином. В припадке безумия он убил собственных сыновей, а потому был вынужден пойти на службу к Еврисфею. По приказу последнего Геракл совершил двенадцать подвигов: победил немейского льва и лернейскую гидру, поймал керинейскую лань и эриманфского вепря, убил стимфалийских птиц, очистил авгиевы конюшни, укротил критского быка, завладел конями Диомеда, поясом Ипполиты, коровами Гериона, привёл к Еврисфею Цербера из загробного мира и принёс яблоки Гесперид.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.