А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
Данный калькулятор предназначен для построения графиков функций онлайн.
Графики функций – это множество всех точек, представляющих геометрический вид функции; при этом x – любая точка из области определения функции, а все y - точки, равные соответствующим значениям функции. Другими словами, график функции y=f(x) является множеством всех точек, абсциссы и ординаты которых соответствуют уравнению y=f(x).
Изобразить график функции абсолютно точно в большинстве случаев невозможно, так как точек бесконечно много, трудно найти все точки графика функции. В таких случаях можно построить приблизительный график функции. Чем больше точек берется в расчет, тем график более точный.
б) c3=c2*q=12*(-4)=-48
в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n
г) c6=3/4*(-4)^6=3*4^5=3*1024=3072
д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей.
e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4
ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
Данный калькулятор предназначен для построения графиков функций онлайн.
Графики функций – это множество всех точек, представляющих геометрический вид функции; при этом x – любая точка из области определения функции, а все y - точки, равные соответствующим значениям функции. Другими словами, график функции y=f(x) является множеством всех точек, абсциссы и ординаты которых соответствуют уравнению y=f(x).
Изобразить график функции абсолютно точно в большинстве случаев невозможно, так как точек бесконечно много, трудно найти все точки графика функции. В таких случаях можно построить приблизительный график функции. Чем больше точек берется в расчет, тем график более точный.
Объяснение:
Вот так и надо выводить.