Cos10x·cos7x-cos2x·cos15x=0⇒
1/2·[cos(10x-7x)+cos(10x+7x)]-1/2[cos(15x-2x)+cos(15x+2x)]=0
1/2(cos3x+cos17x-cos13x-cos17x)=0
cos3x-cos13x=0⇒
-2sin(3x+13x)/2·sin(3x-13x)/2=0
sin8x·sin(-5x)=0 ⇒ -sin8x·sin5x=0⇒
sin8x=0; 8x=kπ;k∈Z; x=kπ/8;k∈Z;
sin5x=0; 5x=kπ;k∈Z x=kπ/5;k∈Z
(10 - (x-a)) / (x-a) <= 0
дробь меньше нуля, когда числитель и знаменатель имеют разные знаки...
x-a < 0
10 - (x-a) >= 0
или
x-a > 0
10 - (x-a) <= 0
решение первой системы:
x-a < 0
x-a <= 10
x-a < 0
решение второй системы:
x-a > 0
x-a >= 10
x-a >= 10
решение первого неравенства: x < a или x >= a+10 (два луча)))
второе неравенство равносильно двойному неравенству:
-4 <= x-3a <= 4
3a-4 <= x <= 4+3a (один отрезок)))
если отметить все значения на числовой прямой, то станет очевидно, что
расстояние между концами первых двух лучей 10 единиц,
длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц
система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку...
это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого)))
2a = 6
a = 3
(10 - (x-a)) / (x-a) <= 0
дробь меньше нуля, когда числитель и знаменатель имеют разные знаки...
x-a < 0
10 - (x-a) >= 0
или
x-a > 0
10 - (x-a) <= 0
решение первой системы:
x-a < 0
x-a <= 10
x-a < 0
решение второй системы:
x-a > 0
x-a >= 10
x-a >= 10
решение первого неравенства: x < a или x >= a+10 (два луча)))
второе неравенство равносильно двойному неравенству:
-4 <= x-3a <= 4
3a-4 <= x <= 4+3a (один отрезок)))
если отметить все значения на числовой прямой, то станет очевидно, что
расстояние между концами первых двух лучей 10 единиц,
длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц
система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку...
это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого)))
2a = 6
a = 3