Пусть было сделано n обменных операций 1-го типа и k операций 2-го типа (по порядку как они шли в условии). Тогда количество золотых монет в результате изменится на величину -4n+5k=0 т.к. их общее количество не изменилось, а при каждой операции 1-го типа золотых уменьшается на 4, и 2-го типа количество золотых увеличивается на 5. На операции каждого типа количество медных монет увеличивается на 1, значит всего было сделано 45 операций, т.е. n+k=45. Отсюда n=45-k, -4(45-k)+5k=0, k=20, n=25. Аналогично, как с золотыми, количество серебряных изменится на величину 5n-8k=5*25-8*20=125-160=-35. Т.е. количество серебряных монет уменьшилось на 35.
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.