Работаем по формуле А=Р*t А - работа Р - производительность t - время
1)Примем всю работу на единицу. Так как оба работника выполняют эту работу за 35 дней, то можно найти их производительность: Р=1/35 2) так как 7 дней они работали вместе (с производительностью 1/35), то можно найти, какую часть работы они выполнили: А(1)=7*(1/35)=1/5 3) найдем, какую часть работы им осталось выполнить: А(2)=1-А(1)=1-(1/5)=4/5 4) так как второй работник выполнил оставшуюся часть работы(А2) за 40 дней, найдем его производительность: Р=А(2)/t=(4/5):40=1/50 5) Теперь нам известна производительность второго работника. Мы можем узнать, за какое время он мог бы выполнить всю работу, работая один: t=A/P t=1/(1/50)=50 ответ: за 50 дней
16,8 км/ч; 14 км/ч.
Объяснение:
Обозначим скорость лодки в стоячей воде V км/ч, а скорость теч. v км/ч.
Тогда скорость лодки по течению будет (V+v) км/ч.
А скорость лодки против течения будет (V-v) км/ч.
Составляем систему:
{ 1,5*(V+v) + 2(V-v) = 26,6 км
{ 3(V-v) = 2,5(V+v)
Раскрываем скобки и умножим 1 уравнение на 10, а 2 уравнение на 2:
{ 15V + 15v + 20V - 20v = 266
{ 6V - 6v = 5V + 5v
Приводим подобные:
{ 35V - 5v = 266
{ V = 11v
Подставляем 2 уравнение в 1 уравнение:
35*11v - 5v = 266
380v = 266
v = 266/380 = (2*7*19)/(2*5*19) = 7/5 = 1,4 км/ч - скорость течения реки.
V = 11v = 11*1,4 = 15,4 км/ч - скорость лодки в стоячей воде.
V + v = 15,4 + 1,4 = 16,8 км/ч - скорость лодки по течению.
V - v = 15,4 - 1,4 = 14 км/ч - скорость лодки против течения.
А - работа
Р - производительность
t - время
1)Примем всю работу на единицу. Так как оба работника выполняют эту работу за 35 дней, то можно найти их производительность: Р=1/35
2) так как 7 дней они работали вместе (с производительностью 1/35), то можно найти, какую часть работы они выполнили:
А(1)=7*(1/35)=1/5
3) найдем, какую часть работы им осталось выполнить: А(2)=1-А(1)=1-(1/5)=4/5
4) так как второй работник выполнил оставшуюся часть работы(А2) за 40 дней, найдем его производительность: Р=А(2)/t=(4/5):40=1/50
5) Теперь нам известна производительность второго работника. Мы можем узнать, за какое время он мог бы выполнить всю работу, работая один: t=A/P
t=1/(1/50)=50
ответ: за 50 дней