Дан клетчатый квадрат 20×20, в каждой клетке которого стоит фишка. за один ход каждая фишка сдвигается влево или вниз на одну клетку, если это возможно. какое наибольшее количество клеток может быть занято фишками через 19 ходов? (фишки не могут выходить за пределы доски; на одной клетке может стоять несколько фишек).
1-2х ≤ 5х+25 так как основание лог меньше1
7х≥-24
х≥-24/7
Промежуток (-24/7 ; +бесконечность)
log3(x-6)+log3(x-8)>log3(27)
log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда
(x-6)(x-8)>27
но тут не получается красивого решения, возможно в условии ошибка?
в третьем lgx (lgx+1) < 0 совокупность двух систем
совокупность:
первая система:
lgx<0 ⇒решений нет
(lgx+1)> 0 ⇒
вторая
lgx>0 ⇒ промежуток (0;+бесконечность)
(lgx+1)< 0 ⇒ lgx<-lg10 ⇒ х<0,1
x∈(0;0,1)
Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)