В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Алшиния
Алшиния
09.02.2023 12:12 •  Алгебра

Реши уравнение 5sinx+17cosx=√314.
(Не сокращай!)

Показать ответ
Ответ:
eandrukova567
eandrukova567
04.08.2020 01:31

x=arcctg(3.4)

Объяснение:

5sinx+17cosx=√314.

Возведем в квадрат.

25sin²x + 289cos²x + 170sinxcosx = 314.

25sin²x + 289cos²x + 170sinxcosx = 314(sin²x + cos²x)

Разделим на cos²x. (Прим:  \frac{cos^{2} x}{sin^{2} x} = ctg^{2}x)

25 +  + 289 ctg²x + 170ctgx = 314 + 314ctg²x

314ctg²x - 289 ctg²x - 170ctgx + 314-25 = 0

25 ctg²x - 170ctgx + 289 = 0.

Заметим формулу a² - 2ab + b². Свернем по этой формуле.

(5ctgx - 17)² = 0

Найдем корни данного уравнения:

±(5ctgx - 17)=0

Разбиваем на два уравнения

5ctgx - 17 = 0 и -5ctgx + 17 = 0

Заметим, что это одно и то же. Решим первое уравнение.

5ctgx =17

ctgx = 17/5 =3.4

x=arcctg(3.4)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота