1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
Объяснение:
Уравнение касательной к графику функции f(x) в точке х = х0 имеет следующий вид:
у = f'(x0) * (х - х0) + f(x0).
Найдем производную функции f(x) = x² + 2:
f'(x) = (x² + 2)' = 2x.
Найдем значение производной функции f(x) = x² + 2 в точке х0 = 1:
f'(1) = 2 * 1 = 2.
Найдем значение функции f(x) = x² + 2 в точке х0 = 1:
f(1) = 1² + 2 = 1 + 2 = 3.
Составляем уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1:
у = 2 * (х - 1) + 3.
Упрощая данное уравнение, получаем:
у = 2х - 2 + 3;
у = 2х + 1.
ответ: уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1: у = 2х + 1.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
Объяснение:
Уравнение касательной к графику функции f(x) в точке х = х0 имеет следующий вид:
у = f'(x0) * (х - х0) + f(x0).
Найдем производную функции f(x) = x² + 2:
f'(x) = (x² + 2)' = 2x.
Найдем значение производной функции f(x) = x² + 2 в точке х0 = 1:
f'(1) = 2 * 1 = 2.
Найдем значение функции f(x) = x² + 2 в точке х0 = 1:
f(1) = 1² + 2 = 1 + 2 = 3.
Составляем уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1:
у = 2 * (х - 1) + 3.
Упрощая данное уравнение, получаем:
у = 2х - 2 + 3;
у = 2х + 1.
ответ: уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1: у = 2х + 1.