Дан треугольник ABC пример периметр которого 42 см на стороне AC взята точка M Так что периметр треугольника ABM и треугольника BMC равны 32 см и 35 см соответственно Найдите длину отрезка BM
Р (треугольника АВС) = АВ + ВС + СА = 42 см; также по условию задано, что АС = АМ + МС, потому как на стороне АС взята точка М; Р (треугольника АВМ) = АВ + ВМ + МА = 32 см; Р (треугольника ВМС) = ВС + СМ + МВ = 35 см; тогда Р (треугольника АВС) = Р (треугольника АВМ) - МВ + Р (треугольника ВМС) - МВ; Подставим заданные значения в уравнения периметра треугольника АВС, неизвестную сторону МВ обозначим через переменную х:
BM = 12,5см
Объяснение:
Р (треугольника АВС) = АВ + ВС + СА = 42 см; также по условию задано, что АС = АМ + МС, потому как на стороне АС взята точка М; Р (треугольника АВМ) = АВ + ВМ + МА = 32 см; Р (треугольника ВМС) = ВС + СМ + МВ = 35 см; тогда Р (треугольника АВС) = Р (треугольника АВМ) - МВ + Р (треугольника ВМС) - МВ; Подставим заданные значения в уравнения периметра треугольника АВС, неизвестную сторону МВ обозначим через переменную х:
42 = 32 - х + 35 - х;
2х = 32 + 35 - 42;
2х = 67 - 42;
2х = 25;
х = 25 : 2;
х = 12,5 (см) - сторона ВМ.
ответ: ВМ = 12,5 см.
Объяснение:
Р(ΔABM)=AB+BM+AM
P(ΔBMC)=BC+BM+MC
P(ΔABM)+P(ΔBMC)=AB+BC+2·BM+AM+MC, AM+MC=AC,
32+35=42+2BM ⇒2BM=67-42, 2BM=25,BM=12,5(см)