Дан вектор а (2; 1; -2) а) известно, что а = EF. Найдите координаты точки F, если E (2;0;3) б) Найдите значения m и n, при которых векторы a и b коллинеарны, если b (m; n; -4) в) Найдите координаты и модуль вектора с, если с = -3а
1)Найди решение неравенства. Начерти его на оси координат.
x>4.
На числовой оси отметить ноль по центру, от нуля вправо отложить четыре клеточки, это будет точка х=4. Теперь от этой точки штриховать вправо, как бы до + бесконечности. Неравенство строгое, поэтому точка 4 должна обозначаться маленьким кружком, пустым внутри.
ответ: x∈(4;+∞]
2)Отобрази решение неравенства 1≤z на оси координат. Запиши ответ в виде интервала.
На числовой оси отметить ноль по центру, от нуля вправо отложить одну клеточку, это будет точка z=1, от этой точки влево штриховать, как бы до - бесконечности.
Интервал: z ∈(-∞, 1)
⦁ Длины сторон треугольника обозначены как a, b и c. Какие из неравенств неверны?
Объяснение:
1)Найди решение неравенства. Начерти его на оси координат.
x>4.
На числовой оси отметить ноль по центру, от нуля вправо отложить четыре клеточки, это будет точка х=4. Теперь от этой точки штриховать вправо, как бы до + бесконечности. Неравенство строгое, поэтому точка 4 должна обозначаться маленьким кружком, пустым внутри.
ответ: x∈(4;+∞]
2)Отобрази решение неравенства 1≤z на оси координат. Запиши ответ в виде интервала.
На числовой оси отметить ноль по центру, от нуля вправо отложить одну клеточку, это будет точка z=1, от этой точки влево штриховать, как бы до - бесконечности.
Интервал: z ∈(-∞, 1)
⦁ Длины сторон треугольника обозначены как a, b и c. Какие из неравенств неверны?
Неясное задание.
3) Известно, что b>c.
Выбери верные неравенства:
7,9−b>7,9−c
−7,9b<−7,9c
7,9b>7,9c
b+7,9>c+7,9
b−7,9>c−7,9
Выделены верные неравенства.
Sn-3,n=156
Sn=350
n-?
3 записи условия дадут нам 3 уравнения, с которыми мы и будем возиться.
1) S4 = 124
(a1 + a4)·4/2 = 124
а1 + а4 = 62
а1 + а1 + 3d = 62
2a1 + 3d = 62 ⇒ 2a1 = 62 - 3d
2) (an-3 + an)·4/2 = 156
a1 +d(n-4) + a1 + d (n-1) 78
2a1 + d( n - 4 + n -1) = 78
2a1 + d(2n -5) = 78
62 -3d + d(2n - 5) = 78
d(-3 +2n - 5) = 78 - 62
d(2n - 8) = 16 ⇒ d = 16/(2n - 8)
3) Sn = 350
(a1 + an)·n/2 = 350
(a1 + a1 + d(n - 1))·n = 700
(2a1 + d(n - 1))·n = 700
( 62 - 3d + d(n -1)·n = 700
(62 +d(-3 + n -1))·n = 700
(62 +d(n - 4))·n = 700
(62 + 16/2(n-4)·(n -4))·n = 700
70n = 700
n = 100