Область определения данной функции можно найти опираясь на правило"Делить на о нельзя" или числитель дробного выражения не может принимать значения ,равные 0,то есть решаем уравнение х²-64=0 и тогда корни данного уравнения ,числа х=-8 и х=8 исключаем из ответа,то есть ответ в данном случае "Все числа,кроме 8 и-8". Очень часто область определения связано ещё и с определением квадратного корня,то есть выражение под квадратным корнем должен быть неотрицательным.В старших классах свойства логарифма может быть:там выражение под логарифмом должно быть положительным.
Первый шел 5 часов до встречи со вторым поездом . .Второй до встречи с первым поездом 2 часа. Значит времени первый потратил больше в 2,5 раза и скорость у него была в 2,5 раза меньше. Составим уравнение х скорость первого поезда; у скорость второго поезда. 5х+2у=300 у/х=2,5 у=2,5*х подставим в первое уравнение 5х+2*2,5х=300 10х=300 х=30 км/ч первый до встречи со вторым 30*5=150 км. за пять часов. у=2,5*30=75 км/ч второй до встречи с первым 75*2=150 км . за два часа.
х²-64=0 и тогда корни данного уравнения ,числа х=-8 и х=8 исключаем из ответа,то есть ответ в данном случае "Все числа,кроме 8 и-8".
Очень часто область определения связано ещё и с определением квадратного корня,то есть выражение под квадратным корнем должен быть неотрицательным.В старших классах свойства логарифма может быть:там выражение под логарифмом должно быть положительным.
Составим уравнение х скорость первого поезда; у скорость второго поезда. 5х+2у=300
у/х=2,5 у=2,5*х подставим в первое уравнение
5х+2*2,5х=300 10х=300 х=30 км/ч первый до встречи со вторым 30*5=150 км. за пять часов.
у=2,5*30=75 км/ч второй до встречи с первым 75*2=150 км . за два часа.