1) y³ - 2y² = y - 2 y³ - 2y² - y + 2 = 0 Разложим на множители и решим: ( y - 2)(y - 1)(y + 1) = 0 Произведение равно 0,когда один из множителей равен 0,значит, y - 2 = 0 y = 2 y - 1 = 0 y = 1 y + 1 = 0 y = -1 ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0 x⁴ - 14x² + 49 - 4x² - 17 = 0 x⁴ - 18x² + 32 = 0 Разложим на множители и решим: (x² - 16)(x² - 2) = 0 Произведение равно 0,когда один из множителей равен 0,значит, x² - 16 = 0 x² = 16 x = 4 x = - 4 x² - 2 = 0 x² = 2 x = +/- √2
При каких a неравенство (2a-3)cosx -5 >0 не имеет решения.а) { 2a -3 < 0 ;cosx < 5/(2a-3).⇔{ a < 1,5 ;cosx < 5/(2a-3) . не имеет решения , если 5/(2a-3) ≤ -1⇔5/(2a-3)+1 ≤ 0 ⇔(a+1)/(a-1,5) ≤ 0. a∈ [-1 ;1,5) .
б) 2a-3 =0 неравенство не имеет решения. a =1,5.
в) { 2a -3 > 0 ;cosx > 5/(2a-3)..⇔{ a > 1,5 ;cosx > 5/(2a-3) . не имеет решения , если 5/(2a-3) ≥1⇔5/(2a-3)-1 ≥ 0 ⇔(a-4)/(a-1,5) ≤ 0. a∈ (1,5 ; .4].
y³ - 2y² - y + 2 = 0
Разложим на множители и решим:
( y - 2)(y - 1)(y + 1) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
y - 2 = 0
y = 2
y - 1 = 0
y = 1
y + 1 = 0
y = -1
ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0
x⁴ - 14x² + 49 - 4x² - 17 = 0
x⁴ - 18x² + 32 = 0
Разложим на множители и решим:
(x² - 16)(x² - 2) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x² - 16 = 0
x² = 16
x = 4
x = - 4
x² - 2 = 0
x² = 2
x = +/- √2
ответ: x = 4, x = - 4, x = √2, x = - √2.
не имеет решения , если 5/(2a-3) ≤ -1⇔5/(2a-3)+1 ≤ 0 ⇔(a+1)/(a-1,5) ≤ 0.
a∈ [-1 ;1,5) .
б) 2a-3 =0 неравенство не имеет решения.
a =1,5.
в) { 2a -3 > 0 ;cosx > 5/(2a-3)..⇔{ a > 1,5 ;cosx > 5/(2a-3) .
не имеет решения , если 5/(2a-3) ≥1⇔5/(2a-3)-1 ≥ 0 ⇔(a-4)/(a-1,5) ≤ 0.
a∈ (1,5 ; .4].
a ∈ [-1 ;1,5) U {1,5} U (1,5 ; .4] = [ -1 ;4 ].
ответ: a ∈ [ -1 ;4 ].