Это задача,насколько я помню,решается методом интервалов:сначала нужно каждый множитель приравнять к 0.Чтобы первый множитель(x-4) был равен 0,x=4.Так же со второй скобкой.Два получившихся значения x выстраиваем на координатном луче.Соединяем два значения дугой.И проводим еще две дуги от концов средней дуги до бесконечностей(+ или -).Знаки в дугах должны чередоваться.Например,подставим 0 в интервал между первым иксом и вторым.Если в результате вычисления и перемножения получается полож.число,над скобкой ставим +,а над остальными -.Если отриц.,над средней -,над остальными +.Если случай 1(когда + в серед.),тогда пишем y>0 при x (знак принадлежности) [x1;x2].Если случай 2(Когда - в серед.),пишем y>0 при x (зн.принадл.[-беск.;x1]и[x2;+беск.],где x1-меньшее значение x,x2-большее.
х - первое число (x∈N)
у - второе число (y∈N)
По условию разность этих чисел равна 11, получаем первое уравнение:
х - у = 11
По условию удвоенная сумма этих же чисел равна 42, получаем второе уравнение:
2(х+у) = 42
Решаем систему:
{х - у = 11
{2*(х + у) = 42
Обе части второго уравнения разделим на 2:
{х - у = 11
{х + у = 21
Сложим эти уравнения и получим:
х - у + х + у = 11 + 21
2х = 32
х = 32 : 2
х = 16 - первое число
Подставим его в первое уравнение:
16 - у = 11
у = 16 - 11
у = 5 - второе число
ответ: 16; 5