Дана функция f(x)= х² - 6х – 7 а) вычислите координаты вершины параболы;
б) запишите уравнение оси параболы;
в) найдите точки пересечения графика функции с осями координат;
г) постройте график заданной функции;
д) определите, в каких четвертях располагается график данной функции.
2.Если в четырехугольнике противоположные стороны попарно равны, то это параллелограмм.
3.Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам,то это параллелограмм.
Доказательство первого признака.
Доказательство:Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
у = -х² + 2х + 10
Объяснение:
Квадратичная функция у = ах² + bx + c (1)
График её проходит через точку (0; 10)
Подставим координаты этой точки в формулу (1)
10 = а·0 + b · 0 + c ⇒ c = 10
Вершина параболы находится в точке (1; 11)
Подставим координаты этой точки в формулу (1)
11 = а + b + 10 ⇒ а + b = 1 (2)
Координата х вершины параболы вычисляется по формуле
х(верш) = -b/(2a)
x (верш) = 1, тогда b = -2a (3)
Подставим (3) в (2) а - 2а = 1 ⇒ а = -1
Тогда b = -2 · (-1) = 2
Квадратичная функция получилась такая
у = -х² + 2х + 10