Дана функция f(x)=x^3-x^2-5x-3. найти промежутки возрастания и убывания функции; экстремумы функции; наибольшее и наименьшее значения функции на промежутке [-2; 1].
11. Если соединить середины двух сторон, то получится средняя линия треугольника, равная половине третьей стороны. Точно так же и с остальными двумя соединениями. Таким образом, получается треугольник, составленный из средних линий данного треугольника. Он подобен данному треугольнику с коэффициентом подобия 1/2, то есть каждая его сторона вдвое меньше соответствующей стороны исходного треугольника. Значит, если в исходном треугольнике две стороны были равны между собой, то и в новом треугольнике две соответствующие стороны будут равны друг другу.
1. Проекцией бокового ребра SA пирамиды является радиус описанной окружности R. H = √(SA² - R²). Найдем радиус из теоремы синусов. a/sin 60° = 2R 6√3/(√3/2) = 12 -- это 2R. R =6 H = √(10² -6² = 8. 2. Найдем производную y' = 28 * 1/cos²x - 28. Приравниваем ее нулю: 28/cos²x-28 = 0 cos²x = 1 cosx = 1 или cos x = -1 x= 2πn x= π +2πn, n∈Z. в заданный промежуток из корней принадлежит только 0. -π/40π/4 + + Функция возрастает на всем промежутке, значит наименьшее значение принимает в левом конце промежутка. min f(x) = f(-π/4) = 28*tg(-π/4) -28*(-π/4) -7π+7 = -28 +7π-7π+7 = -21.
11. Если соединить середины двух сторон, то получится средняя линия треугольника, равная половине третьей стороны. Точно так же и с остальными двумя соединениями. Таким образом, получается треугольник, составленный из средних линий данного треугольника. Он подобен данному треугольнику с коэффициентом подобия 1/2, то есть каждая его сторона вдвое меньше соответствующей стороны исходного треугольника. Значит, если в исходном треугольнике две стороны были равны между собой, то и в новом треугольнике две соответствующие стороны будут равны друг другу.
a/sin 60° = 2R
6√3/(√3/2) = 12 -- это 2R. R =6
H = √(10² -6² = 8.
2. Найдем производную y' = 28 * 1/cos²x - 28.
Приравниваем ее нулю: 28/cos²x-28 = 0
cos²x = 1
cosx = 1 или cos x = -1
x= 2πn x= π +2πn, n∈Z. в заданный промежуток из корней принадлежит только 0.
-π/40π/4
+ +
Функция возрастает на всем промежутке, значит наименьшее значение принимает в левом конце промежутка.
min f(x) = f(-π/4) = 28*tg(-π/4) -28*(-π/4) -7π+7 = -28 +7π-7π+7 = -21.