На первый взгляд задача очень простая. Зачастую решение таких задач сводят к нахождению объемов параллелепипедов и затем объём большего делят на объём меньшего ( как, кстати, и задач на количество плиток одной площади по поверхности большей площади). Переводим размеры в одинаковые единицы измерения Для кузова машины 32дм, 32 дм и 80 дм для коробок 4 дм, 8 дм и 10 дм V1:V2=(32•32•80):(4•8•10)=8•4•8=256 (коробок)
НО! Следует заметить, что объёмы могут делиться нацело, а полученное от деления количество коробок не поместится в кузове, т.к. их размеры могут не быть кратными. На рисунке приложения показан оптимальный вариант размещения коробок. По условию этой задачи коробки можно разместить в кузове без зазоров, они полностью займут его пространство, т.к. размеры коробки помещается по длине кузова 80:10=8 раз, по ширине 32:8=4 раза и по высоте 32:4=8 раз. Всего поместится 8•8•4=256 коробок. Если размещать их длиной по высоте кузова, получим три слоя коробок–32:10=3 (два дм высоты останутся незаполненными). Тогда поместится 20•4•3=240 коробок. Всегда следует высчитывать, сколько раз умещаются размеры меньшей фигуры в размерах большей.
Зачастую решение таких задач сводят к нахождению объемов параллелепипедов и затем объём большего делят на объём меньшего ( как, кстати, и задач на количество плиток одной площади по поверхности большей площади).
Переводим размеры в одинаковые единицы измерения
Для кузова машины 32дм, 32 дм и 80 дм
для коробок 4 дм, 8 дм и 10 дм
V1:V2=(32•32•80):(4•8•10)=8•4•8=256 (коробок)
НО! Следует заметить, что объёмы могут делиться нацело, а полученное от деления количество коробок не поместится в кузове, т.к. их размеры могут не быть кратными.
На рисунке приложения показан оптимальный вариант размещения коробок.
По условию этой задачи коробки можно разместить в кузове без зазоров, они полностью займут его пространство, т.к. размеры коробки помещается по длине кузова 80:10=8 раз, по ширине 32:8=4 раза и по высоте 32:4=8 раз. Всего поместится 8•8•4=256 коробок.
Если размещать их длиной по высоте кузова, получим три слоя коробок–32:10=3 (два дм высоты останутся незаполненными). Тогда поместится 20•4•3=240 коробок.
Всегда следует высчитывать, сколько раз умещаются размеры меньшей фигуры в размерах большей.
В точке касания координаты прямой и графика функции совпадают.
Поэтому приравняем: \sqrt{4x^2+\frac{a}{3} } +3x = 2х + 1.
Перенесём 3х направо: \sqrt{4x^2+\frac{a}{3} } = -x + 1.
Возведём обе части в квадрат: 4x² + (a/3) = х² - 2х + 1.
Приведём подобные и получаем квадратное уравнение:
3x² + 2х + ((a/3) - 1) = 0.
Д = 2² - 4*3*((а/3)-1) = 4 - (12*а/3) + 12 = 16 - 4а = 4(4 - а).
Чтобы решение было единственным (одна точка касания), дискриминант должен быть равен нулю: 4(4 - а) = 0.
Отсюда получаем ответ: а = 4.