Нужно лишь определить значение коэффициента k.Из формулы линейной функции y=kx получим, что k=yx. Поэтому, для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе. Прямая проходит через точку M(4;2), а для этой точки имеем 24=0,5. Значит, k=0,5 и данная прямая является графиком линейной функции y=0,5x. График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1, то из равенства y=kx находим, что y=k) и проводят прямую через эту точку и начало координат.
ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
Нужно лишь определить значение коэффициента k.Из формулы линейной функции y=kx получим, что k=yx. Поэтому, для определения коэффициента k достаточно взять любую точку на прямой и найти отношение ординаты этой точки к её абсциссе. Прямая проходит через точку M(4;2), а для этой точки имеем 24=0,5. Значит, k=0,5 и данная прямая является графиком линейной функции y=0,5x. График линейной функции y=kx обычно строят так: берут точку (1;k) (если x=1, то из равенства y=kx находим, что y=k) и проводят прямую через эту точку и начало координат.
Объяснение: