Дана прямая: 9х+3у-7=0 а) составить уравнение прямой, проходящей через точку М (2; -2), параллельной данной прямой; б) составить уравнение прямой, проходящей через точку М (2; -2), параллельной данной прямой;
в) найти расстояние от точки М (2; -2) до данной прямой.
Пусть км/ч - собственная скорость лодки в стоячей воде, тогда
км/ч - скорость движения лодки против течения реки;
км/ч - скорость движения лодки по течению реки.
ч - время движения лодки по течению
ч - время движения лодки против течения
По условию на весь путь затрачен 1 час.
Уравнение:
(ОДЗ: )
< 0 не удовлетворяет ОДЗ.
Если 12 км/ч - собственная скорость лодки в стоячей воде, тогда
12+3 = 15 км/ч - скорость движения лодки по течению реки.
ответ: 15 км/ч
1) Пусть у = х².
2) Тогда получаем новое уравнение второй степени:
у² - 5у + 4 = 0
Коэффициенты данного уравнения: a = 1, b = -5, c = 4.
Дискриминант равен:
D = b2 – 4ac = (-5)2 – 4 · 1 · 4 = 9
Дискриминант D > 0, следовательно уравнение имеет два действительных корня.
у1 = (-b + √D) / 2а = (-(-5) + √9) / 2 * 1 = 4.
у2 = (-b - √D) / 2а = (-(-5) - √9) / 2 * 1 = 1.
3) Вернувшись к замене у = х², подставим в нее вместо у найденные значения и получим два сокращенных квадратных уравнения: х² = 4 и х² = 1.
4) х² = 4
х = ±√4
х1,2 = ±2;
х² = 1
х = ±√1
х3,4 = ±1.
ответ: х1,2 = ±2; х3,4 = ±1.