ответ: 37.
Объяснение:
Пусть х - цифра из разряда десятков задуманного числа,
у - цифра из разряда единиц.
Задуманное число равно (10х + у),
а сумма его цифр равна х + у = 10.
Число записанное теми же цифрами, но в обратном порядке:
у - цифра разряда десятков,
х - цифра разряда единиц.
Число записанное в обратном порядке равно: (10у + х).
- это цифра из разряда десятков задуманного числа.
10 - 3 = 7 - цифра из разряда единиц задуманного числа.
Задуманное число: 37.
Число записанное в обратном порядке: 73
Проверка:
73 - 37 = 36
Всего три пары -
Для того чтобы решить задачу, нужно правильно сформулировать проблему -
"Требуется найти все пары , где так что ."
Из равенства очевидно что делится на 3. Следовательно хотя бы одно из чисел делится на 3. Без огранчения общности, предположим что .
Следовательно, высшеупомянотое равенство преообразовывается в
, из которого выводим .
Заметим что отсюда выходит что, .
Т.к. цело только и только тогда, когда цело, то следовательно, 3 должно делится на .
Число 3 делится только на четыре числа - 3, -3, 1, -1. Но лишь только два из них подходят - 3 и 1.
Следовательно,
или .
Т.е.,
или
Отсюда получаем две пары - . Однако очевидно, что также и пара подходит.
ответ: 37.
Объяснение:
Пусть х - цифра из разряда десятков задуманного числа,
у - цифра из разряда единиц.
Задуманное число равно (10х + у),
а сумма его цифр равна х + у = 10.
Число записанное теми же цифрами, но в обратном порядке:
у - цифра разряда десятков,
х - цифра разряда единиц.
Число записанное в обратном порядке равно: (10у + х).
- это цифра из разряда десятков задуманного числа.
10 - 3 = 7 - цифра из разряда единиц задуманного числа.
Задуманное число: 37.
Число записанное в обратном порядке: 73
Проверка:
73 - 37 = 36
Всего три пары -
Объяснение:
Для того чтобы решить задачу, нужно правильно сформулировать проблему -
"Требуется найти все пары , где так что ."
Из равенства очевидно что делится на 3. Следовательно хотя бы одно из чисел делится на 3. Без огранчения общности, предположим что .
Следовательно, высшеупомянотое равенство преообразовывается в
, из которого выводим .
Заметим что отсюда выходит что, .
Т.к. цело только и только тогда, когда цело, то следовательно, 3 должно делится на .
Число 3 делится только на четыре числа - 3, -3, 1, -1. Но лишь только два из них подходят - 3 и 1.
Следовательно,
или .
Т.е.,
или
Отсюда получаем две пары - . Однако очевидно, что также и пара подходит.