Вопрос не очень понятен, но вот все, что произошло с прямоугольником: Стороны были равны n и 6n . После увеличения первой и уменьшения второй первая стала 3*n= 3n, и вторая 6:2n= 3n. то есть получился квадрат со стороной 3n Периметр был (n+6n)*2 =14n, стал 4*3n=12n
Площадь прямоугольника была n*6n =6n^2, а стала 3n*3n=9n^2, то есть площадь увеличилась в полтора раза
Если же вопрос стоит тоько о площажи, то изменеие ее можно посчитать как произведение изменений сторон, то есть S2 = S1*3/2 = 1.5 S1
Решение системы уравнений a= -11
d= -8
Объяснение:
3(a−d)−(a+d)=10
2(a−d)−(a+d)=13
Раскроем скобки, приведём подобные члены:
3a-3d-a-d=10
2a-2d-a-d=13
2a-4d=10
a-3d=13
Выразим а через d во втором уравнении, подставим выражение в первое уравнение и вычислим d.
a-3d=13
a=13+3d
Но прежде разделим первое уравнение на 2 для удобства вычислений:
2a-4d=10/2
а-2d=5
13+3d-2d=5
d=5-13
d= -8
a=13+3d
a=13+3*(-8)=13-24
a= -11
Решение системы уравнений a= -11
d= -8
Проверка:
3(-11+8)-(-11-8)=3*(-3)+19= -9+19=10 10=10
2(-11+8)-(-11-8)=2*(-3)+19= -6+19=13 13=13, всё верно.
Стороны были равны n и 6n . После увеличения первой и уменьшения второй первая стала 3*n= 3n, и вторая 6:2n= 3n. то есть получился квадрат со стороной 3n
Периметр был (n+6n)*2 =14n, стал 4*3n=12n
Площадь прямоугольника была n*6n =6n^2, а стала 3n*3n=9n^2, то есть площадь увеличилась в полтора раза
Если же вопрос стоит тоько о площажи, то изменеие ее можно посчитать как произведение изменений сторон, то есть
S2 = S1*3/2 = 1.5 S1