Дано линейное уравнение 7x-8y-21 а)найдите точки пересечения графика этого уравнение с осями координат б) установите, принадлежит ли графику данного уравнения точка B(3/7;-6)
Напиши неравенство (х+6)*(х-2)*(х-5)>0; нарисуй числовую ось и рядом со стрелкой пририсуй х. Отметь на оси точки х=-6 , х=2, х=5 . Точки эти надо выколоть, то есть сделать незакрашенными. . Проставь справа налево +, затем минус, затем снова плюс и снова минус, Между точками х=-6 и х=2 должен быть плюс, если ничего не перепутаешь.Заштрихуй зоны между х=-6 и х=2 и вправо от х=5 ТОгда наименьшим целым значением неравенства будет точка х=-5 . Это и будет ответ. А вообще это наз-ся методом интервалов.
Нарисовать не могу, постараюсь подробно написать.Примем большее основание за b, меньшее основание -а., высота трапеции -h. 1)В трапеции высота h равна вертикальной боковой стороне и находится напротив угла в 30 градусов, значит, наклонная боковая сторона в 2 раза больше И равна 2h. ТОгда периметр трапеции равен= f+b+h+2h=3h+a+b=48 . Выразим a+b=48-3h; Теперь площадь трапеции S=(a+b)*h/2=(48-3h)*h/2=24h-1,5h^2 ;Исследуем на максимум и минимум. Найдем производную и приравняем к нулю . S'=24-3h=0; h=8. S'(6)=24-3*6=6>0; s'(9)=24-3*9=-3<0 Производная в точке h=8 меняет знак с + на -, след-но это точка максимума. a+b=48-3h=48-3*8=24; ТОгда Sнаиб=(a+b)*h/2=24*8/2=96.