1)в) 2)б) 3)на нуль делить нельзя (? нет такого ответа) 4)а) 5)1-(х-3)/2=(2-х)/3 + 4 проведём к общему знаменателю (6) 6-3х+9=4-2х+24 -3х+2х=24-6-9 -х=9 х= -9 6)график - прямая линия задаём две точки х=0;-3,5 у=-3,5;0 строим их на координатной плоскости,проводим через них прямую. при х= -2,5 у = -1! 7)Пусть на шапку ушло х г,тогда на шарф 5х (г),а на рукавицы (х-5)(г),зная,что всего ушло 555 (г) составим и решим уравнение 5х+х+х-5=555 7х=555+5 7х=560 х=560÷7 х=80 (г)-на шапку 5×80=400 (г)-шарф 80-5=75 (г)-рукавицы
2)б)
3)на нуль делить нельзя (? нет такого ответа)
4)а)
5)1-(х-3)/2=(2-х)/3 + 4 проведём к общему знаменателю (6)
6-3х+9=4-2х+24
-3х+2х=24-6-9
-х=9
х= -9
6)график - прямая линия
задаём две точки
х=0;-3,5
у=-3,5;0
строим их на координатной плоскости,проводим через них прямую.
при х= -2,5 у = -1!
7)Пусть на шапку ушло х г,тогда на шарф 5х (г),а на рукавицы (х-5)(г),зная,что всего ушло 555 (г) составим и решим уравнение
5х+х+х-5=555
7х=555+5
7х=560
х=560÷7
х=80 (г)-на шапку
5×80=400 (г)-шарф
80-5=75 (г)-рукавицы
Объяснение:
Во-первых, эти два примера - одинаковые.
Вы поменяли а на х и cos a = -1/√3 = -√3/3
Отсюда cos^2 a = 1/3
Во-вторых, есть такое выражение для произведения синусов
sin x*sin x = 1/2*(cos(x-y) - cos(x+y))
Подставляем
cos 8a + cos 6a + 2sin 5a*sin 3a = cos 8a+cos 6a+2/2(cos 2a-cos 8a) =
= cos 8a + cos 6a + cos 2a - cos 8a = cos 2a + cos 6a
Еще есть выражение для косинуса тройного аргумента
cos 3x = cos(x+2x) = cos x*cos 2x - sin x*sin 2x =
= cos x*cos 2x - sin x*2sin x*cos x = cos x*(2cos^2 x - 1 - 2sin^2 x) =
= cos x*(2cos^2 x - 1 - 2 + 2cos^2 x) = cos x*(4cos^2 x - 3)
Подставляем
cos 2a + cos 6a = cos 2a + cos 2a*(4cos^2 (2a) - 3) =
= cos 2a*(4cos^2 (2a) - 2) = 2cos 2a*(2cos^2 2a - 1) =
= 2*(2cos^2 a - 1)(2(2cos^2 a - 1)^2 - 1) =
= 2*(2/3 - 1)(2*(2/3 - 1)^2 - 1) = 2(-1/3)(2*(1/3)^2 - 1) =
= 2(-1/3)(2*1/9 - 1) = 2(-1/3)(-7/9) = 14/27
Подробнее - на -