Дано уравнение: (x−a)(x2−6x+5)=0.
Найди те значения a, при которых уравнение имеет три разных корня, и они образуют арифметическую прогрессию.
Вводи возможные значения a в возрастающей последовательности:
1.
;
2.
;
3.
.
Дополнительный во чему равны корни квадратного уравнения?
x2−6x+5=0 (первым пиши меньший корень).
x1 =
; x2 =
.
6) = (x- 2 y (в квадрате ) -x (в кубе ) ) (x + 2y (в квадрате)+x ( в кубе) )
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114