Дано уравнение: x / x + 10 = 1 / x - 8 a) укажите область допустимых значений уравнения б) приведите рациональное уравнение к квадратному уравнению с) найдите решения рационального уравнения
Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
номер а
преобразуем выражение (в частности, вынося за скобки общий множитель):
один из множителей кратен 73, а значит, и число кратно 73.
номер б
тот же принцип.
один из множителей кратен 75 — значит число кратно 75.
номер в
также видим, что один из множителей кратен 84.
номер г
также видим, что один из множителей кратен 37.
Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически.
х² = 6 - х
х² + х - 6 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении.
Для построения прямой достаточно двух точек: х = 0, у = 6,
х = 3, у = -3+6 = 3