Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
x+20y+10xy=40
x+20y-10xy=-8
x+20y+10xy=40
(x+20y+10xy)-(x+20y-10xy)=40-(-8)
x+20y+10xy=40
x+20y+10xy-x-20y+10xy=40+8
x+20y+10xy=40
20xy=48
x+20y+10xy=40
xy=2.4
x+20y+24=40
xy=2.4
x+20y=16
y=2.4/x
x+20*2.4/x=16
y=2.4/x
x+48/x=16
y=2.4/x
(x+48/x)*x=16*x
y=2.4/x
x^2+48=16x
y=2.4/x
x^2-16x+48=0
y=2.4/x
(x-4)(x-12)=0
y=2.4/x
x1=4
x2=12
y1=2.4/4=0.6
y2=2.4/12=0.2
Проверка:
x1=4
y1=2.4/4=0.6
x+20y+10xy=40
4+20*0.6+10*4*0.6=40
4+12+24=40
40=40
x+20y-10xy=-8
4+20*0.6-10*4*0.6=-8
4+12-24=-8
-8=-8
x2=12
y2=2.4/12=0.2
x+20y+10xy=40
12+20*0.2+10*12*0.2=40
12+4+24=40
40=40
x+20y-10xy=-8
12+4-24=-8
-8=-8
9,90,99
Объяснение:
Сумма бесконечно убывающей геометрической прогрессии:
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).