Даны два уравнения: x^2 + (y + 2)^2 = 4 и 2x^2 - y = 3. Составьте из них систему уравнений с двумя переменными. Решите её любым Напишите решение и ответ.
(a-1)x²+ax+1=0 1) при а-1=0 а=1 уравнение имеет один корень 1*х+1=0 х+1=0 х=-1 2) при а≠0 (а-1)х²+ах+1=0 при D=0 уравнение имеет один корень D=a²-4(a-1)*1=a²-4a-4=(a-2)² (a-2)²=0 a-2=0 a=2 х= -а/(2(а-1)=-2/(2(2-1)=-2/2*1=-1
ответ: Уравнение имеет один корень при а=-1 и при а=2 . (Этот корень равен -1)
1) при а-1=0
а=1 уравнение имеет один корень 1*х+1=0
х+1=0
х=-1
2) при а≠0 (а-1)х²+ах+1=0
при D=0 уравнение имеет один корень
D=a²-4(a-1)*1=a²-4a-4=(a-2)²
(a-2)²=0
a-2=0
a=2 х= -а/(2(а-1)=-2/(2(2-1)=-2/2*1=-1
ответ: Уравнение имеет один корень при а=-1 и при а=2 .
(Этот корень равен -1)
1.
Пусть х км - длина всего пути, тогда
40% от х = 0.4х км - проехал в первый час
40% -25% = 15% проехал во второй час в процентах
15%от х = 0.15х км - проехал во второй час
х - (0,4х + 0,15х) = 0,45х км - проехал в третий час
По условию он проехал в третий час 69 км, получаем уравнение:
0,45х = 69
х = 69 : 0,45
х = 153 ¹/³ км - длина всего пути.
ответ: 153 ¹/³ км
2.
Пусть х - первая цифра двузначного числа, т.е. это количество десятков
у - вторая цифра этого числа, т.е. это количество единиц, тогда
(10х+у) - данное двузначное число
Переставив местами цифры, получим новое число (10у+х), которое по условию на 36 меньше данного, получаем уравнение:
(10х+у) - (10у+х) = 36
10х+у - 10у-х = 36
9х - 9у = 36
9·(х - у) = 36
х-у = 36 :9
х - у = 4
ОДЗ: 1 ≤ х ≤ 9
1 ≤ y ≤ 9
С учетом ОДЗ перечисляем все возможные варианты, удовлетворяющие равенству х - у = 4.
1) 9 - 5 = 4, т.е. х=9; у=5 => 95 - первое искомое число
2) 8 - 4 = 4, т.е. х=8; у=4 => 84 - второе искомое число
3) 7 - 3 = 4, т.е. х=7; у=3 => 73 - третье искомое число
4) 6 - 2 = 4, т.е. х=6; у=2 => 62 - четвертое искомое число
5) 5 - 1 = 4, т.е. х=5; у=1 => 51 - пятое искомое число
ответ: 95; 84; 73; 62; 51