Дублирую для Вас решение - я его только что кому-то другому написал, но вот отыскал уже:
задача - найти радиус окружности, описанной вокруг квадрата, то есть дна бассейна.
нетрудно заметить, что радиус этот совпадает с половиной диагонали того самого квадрата. Вот ее и будем искать.
диагонали квадрата равны и пересекаются под прямым углом, а значит - искомая половина диагонали - катет прямоугольного равнобедренного треугольника, гипотенузой которого является сторона квадрата. Зная гипотенузу по теореме Пифагора легко подсчитаем катет, а значит, найдем сторону квадрата - и катет (он же радиус, он же высота подвешенной лампочки) у нас в кармане!
приступим:
сторона квадрата - корень из площади = корень из 32 = 4 корня из двух
осталось посчитать упоминавшийся ранее катет, он же искомый радиус: 2r в квадрате = квадрат гипотенузы = 32 r = корень из 32 деленный на 2 = два корня из двух
это все! Лампа висит на высоте 2 корня из двух [метров]
Через вершину C прямоугольника ABCD проведена прямая, параллельная диагонали BD и пересекающая прямую AB в точке M. Через точку M проведена прямая, параллельная диагонали AC и пересекающая прямую BC в точке N. Найдите периметр четырехугольника ACMN, если диагональ BD равна 8 см
–––––––––––––––
Казалось бы очевидно- стороны четырехугольника ACMN равны между собой и равны диагоналям прямоугольника. Тем не менее это нужно доказать.
МС║ВD по построению.
АВ║ СD - стороны прямоугольника, след, ВМ║СD
Противоположные стороны четырехугольника МВСД лежат на параллельных прямых. ⇒
МВДС - параллелограмм.⇒
ВМ=СD. Но СD=АВ ⇒ ВМ=АВ.
СN ⊥ АМ и делит ее пополам. СВ - высота и медиана ∆ АСМ,⇒
∆ АСМ равнобедренный, и СВ его биссектриса.
В ∆ АМN отрезок NB – медиана и высота ⇒
∆ МАN равнобедренный, и BN- его биссектриса.
AN= MN, a MN=MC=AC
∠АМN =∠MАС как накрестлежащие при параллельных МN и АC и секущей АМ.
Но углы равнобедренного ∆ САМ при АМ равны.⇒∠ АМN=∠СМА=∠САМ ,
МВ ⊥ СN⇒ является высотой ∆ NMC и оо равенству углов при М - биссектрисой. ⇒
NMC - равнобедренный, и NM=MC, отсюда следует равенство AN=MN=MC=АС
Четырехугольник АСМN- ромб.
АС- диагональ прямоугольника ABCD и по условию равна 8
задача - найти радиус окружности, описанной вокруг квадрата, то есть дна бассейна.
нетрудно заметить, что радиус этот совпадает с половиной диагонали того самого квадрата. Вот ее и будем искать.
диагонали квадрата равны и пересекаются под прямым углом, а значит - искомая половина диагонали - катет прямоугольного равнобедренного треугольника, гипотенузой которого является сторона квадрата.
Зная гипотенузу по теореме Пифагора легко подсчитаем катет, а значит,
найдем сторону квадрата - и катет (он же радиус, он же высота подвешенной лампочки) у нас в кармане!
приступим:
сторона квадрата - корень из площади = корень из 32 = 4 корня из двух
осталось посчитать упоминавшийся ранее катет, он же искомый радиус:
2r в квадрате = квадрат гипотенузы = 32
r = корень из 32 деленный на 2 = два корня из двух
это все!
Лампа висит на высоте 2 корня из двух [метров]
Ура!)
Через вершину C прямоугольника ABCD проведена прямая, параллельная диагонали BD и пересекающая прямую AB в точке M. Через точку M проведена прямая, параллельная диагонали AC и пересекающая прямую BC в точке N. Найдите периметр четырехугольника ACMN, если диагональ BD равна 8 см
–––––––––––––––
Казалось бы очевидно- стороны четырехугольника ACMN равны между собой и равны диагоналям прямоугольника. Тем не менее это нужно доказать.
МС║ВD по построению.
АВ║ СD - стороны прямоугольника, след, ВМ║СD
Противоположные стороны четырехугольника МВСД лежат на параллельных прямых. ⇒
МВДС - параллелограмм.⇒
ВМ=СD. Но СD=АВ ⇒ ВМ=АВ.
СN ⊥ АМ и делит ее пополам. СВ - высота и медиана ∆ АСМ,⇒
∆ АСМ равнобедренный, и СВ его биссектриса.
В ∆ АМN отрезок NB – медиана и высота ⇒
∆ МАN равнобедренный, и BN- его биссектриса.
AN= MN, a MN=MC=AC
∠АМN =∠MАС как накрестлежащие при параллельных МN и АC и секущей АМ.
Но углы равнобедренного ∆ САМ при АМ равны.⇒∠ АМN=∠СМА=∠САМ ,
МВ ⊥ СN⇒ является высотой ∆ NMC и оо равенству углов при М - биссектрисой. ⇒
NMC - равнобедренный, и NM=MC, отсюда следует равенство AN=MN=MC=АС
Четырехугольник АСМN- ромб.
АС- диагональ прямоугольника ABCD и по условию равна 8
Периметр АСМN=8*4=32