9y² + 12xy практически создают квадрат суммы, дополним это выражение: 9y² + 12xy + 4x² = (3y + 2x)², заметим, что это выражение есть целое число в квадрате.
при любом значении b решите уравнение : (x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ; ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4. --- x²+(3b+2)x+2b² +3b+1=0 ; D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения : x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 , т.е. если b ≠ -1 и b ≠ -2,5. x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , . т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S. Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ b² +3b+2 =0 ⇒[ b = -2 ; b = -1 . 2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
9y² + 12xy практически создают квадрат суммы, дополним это выражение:
9y² + 12xy + 4x² = (3y + 2x)², заметим, что это выражение есть целое число в квадрате.
5x² + 12xy + 9y² + 6x + 34 = x² + (4x² + 12xy + 9y²) + 6x + 34 = (3y + 2x)² + x² + 6x + 34
x² + 6x также дополняем до полного квадрата:
x² + 6x + 9 = (x + 3)²
(3y + 2x)² + x² + 6x + 34 = (3y + 2x)² + x² + 6x + 9 + 25 = (3y + 2x)² + (x + 3)² + 25
25 = 5² (целое число в квадрате)
(3y + 2x)² + (x + 3)² + 25 = (3y + 2x)² + (x + 3)² + 5²
Итак, получившееся выражение однозначно при любых целых x и y можно представить в виде суммы квадратов трёх натуральных чисел.
(x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ;
ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4.
---
x²+(3b+2)x+2b² +3b+1=0 ;
D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения :
x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 ,
т.е. если b ≠ -1 и b ≠ -2,5.
x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , .
т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S.
Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔
b² +3b+2 =0 ⇒[ b = -2 ; b = -1 .
2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
b ≠ -5 ; -2,5 ; -2 ; - 1.