Даны многочлены = 43 −5+11, = 23 +2 −6 и = −+1 от одной переменной . Найдите:
а) степень каждого из данных многочленов , , ;
б) многочлен −2 − 3 + 4 и запишите его в стандартном виде;
в) придумайте такой многочлен , чтобы многочлен − 2 − был бы многочленом
первой степени
производная там будет больше нуля, где функция возрастает, а именно на промежутках [-3.9;-1] и [2;4.2] и соответственно производная меньше нуля, если функция убывает. здесь по графику видно, что х∈[-1;2]
Точки экстремума - это точки, при переходе через которые которых функция меняет характер, а производная знак.
Точка максимума - х=-1, в ней возрастание сменяется на убывание, и производная меняет знак с плюса на минус, и х=2- точка минимума, т.к. при переходе через нее производная меняет знак с минуса на плюс, а функция характер с убывания на возрастание.
f`(x)=3x²-12x-36=3(x²-4x-12)=0
(x²-4x-12)=0 по теореме Виета
x1+x2=4 U x1*x2=-12⇒x1=-2 U x2=6
+ _ +
________________________________________
возр -2 Убыв 6 возр
возр x∈(-≈;-2) U (6;≈)
2)При нахождении первообразной степень увеличиваем на 1 и на этот показатель делим неизвестное
F(x)= - 6 - 3x+C= - 2[tex] x^{3} - 3x+C
3)Делаем тоже самое , что в 1.Смена знака с минуса на плюс-минимум
f`(x)=4 -1/x=(4x-1)/x=0
4x-1=0⇒4x=1⇒x=1/4
_ +
_____________________
1/4
min
ymin(1/4)=4*1/4-ln1/4+1=1-ln1+ln4+1=2+ln4
(1/4;2+ln4)